1
|
Liu Z, Jiang C, Yin Z, Ibrahim IA, Zhang T, Wen J, Zhou L, Jiang G, Li L, Yang Z, Huang Y, Yang Z, Gu Y, Meng D, Yin H. Ecological features of microbial community linked to stochastic and deterministic assembly processes in acid mine drainage. Appl Environ Microbiol 2024:e0102824. [PMID: 39679708 DOI: 10.1128/aem.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/09/2024] [Indexed: 12/17/2024] Open
Abstract
Ecological processes greatly shape microbial community assembly, but the driving factors remain unclear. Here, we compiled a metagenomic data set of microbial communities from global acid mine drainage (AMD) and explored the ecological features of microbial community linked to stochastic and deterministic processes from the perspective of species niche position, interaction patterns, gene functions, and viral infection. Our results showed that dispersal limitation (DL) (48.5%~93.5%) dominated the assembly of phylogenetic bin in AMD microbial community, followed by homogeneous selection (HoS) (3.1%~39.2%), heterogeneous selection (HeS) (1.4%~22.2%), and drift (DR) (0.2%~2.7%). The dominant process of dispersal limitation was significantly influenced by niche position in temperature (r = -0.518, P = 0.007) and dissolved oxygen (r = 0.471, P = 0.015). Network stability had a significantly negative correlation with the relative importance of dispersal limitation, while it had a positive correlation with selection processes, implying changes in network properties could be mediated by ecological processes. Furthermore, we found that ecological processes were mostly related to the gene functions of energy production and conversion (C), and amino acid transport and metabolism (E). Meanwhile, our results showed that the number of proviruses and viral genes involved in arsenic (As) resistance is negatively associated with the relative importance of ecological drift in phylogenetic bin assembly, implying viral infection might weaken ecological drift. Taken together, these results highlight that ecological processes are associated with ecological features at multiple levels, providing a novel insight into microbial community assembly in extremely acidic environments. IMPORTANCE Unraveling the forces driving community assemblage is a core issue in microbial ecology, but how ecological constraints impose stochasticity and determinism remains unknown. This study presents a comprehensive investigation to uncover the association of ecological processes with species niche position, interaction patterns, microbial metabolisms, and viral infections, which provides novel insights into community assembly in extreme environments.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | | | - Teng Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Lei Zhou
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Guoping Jiang
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
2
|
Zeng L, Noeparvar P, Burne RA, Glezer BS. Genetic characterization of glyoxalase pathway in oral streptococci and its contribution to interbacterial competition. J Oral Microbiol 2024; 16:2322241. [PMID: 38440286 PMCID: PMC10911100 DOI: 10.1080/20002297.2024.2322241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Objectives To analyze contributions to microbial ecology of Reactive Electrophile Species (RES), including methylglyoxal, generated during glycolysis. Methods Genetic analyses were performed on the glyoxalase pathway in Streptococcus mutans (SM) and Streptococcus sanguinis (SS), followed by phenotypic assays and transcription analysis. Results Deleting glyoxalase I (lguL) reduced RES tolerance to a far greater extent in SM than in SS, decreasing the competitiveness of SM against SS. Although SM displays a greater RES tolerance than SS, lguL-null mutants of either species showed similar tolerance; a finding consistent with the ability of methylglyoxal to induce the expression of lguL in SM, but not in SS. A novel paralogue of lguL (named gloA2) was identified in most streptococci. SM mutant ∆gloA2SM showed little change in methylglyoxal tolerance yet a significant growth defect and increased autolysis on fructose, a phenotype reversed by the addition of glutathione, or by the deletion of a fructose: phosphotransferase system (PTS) that generates fructose-1-phosphate (F-1-P). Conclusions Fructose contributes to RES generation in a PTS-specific manner, and GloA2 may be required to degrade certain RES derived from F-1-P. This study reveals the critical roles of RES in fitness and interbacterial competition and the effects of PTS in modulating RES metabolism.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Payam Noeparvar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Robert A. Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Benjamin S. Glezer
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
3
|
Park SC, Song WS, Yoon SI. Apo structure of the transcriptional regulator PadR from Bacillus subtilis: Structural dynamics and conserved Y70 residue. Biochem Biophys Res Commun 2020; 530:215-221. [PMID: 32828288 DOI: 10.1016/j.bbrc.2020.06.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/24/2022]
Abstract
PadR is a bacterial transcriptional regulator that controls the expression of phenolic acid decarboxylase (PadC) in response to phenolic acids to prevent their toxic effects. During transcriptional repression, PadR associates with the operator sequence at the promoter site of the padC gene. However, when phenolic acids are present, PadR directly binds the phenolic acids and undergoes an interdomain rearrangement to dissociate from the operator DNA. To further examine the structural dynamics of PadR, we determined the apo structure of Bacillus subtilis PadR. Apo-PadR exhibits significant interdomain flexibility and adopts structures that are similar to the phenolic acid-bound PadR structures but distinct from the DNA-bound structure, suggesting that apo-PadR can bind phenolic acids without substantial structural rearrangement. Furthermore, we identified the Y70 residue of PadR as the most conserved residue in the PadR family. PadR Y70 displays similar conformations irrespective of the associated partners, and its conformation is conserved in diverse PadR family members. The Y70 residue is surrounded by the key DNA-binding entities of PadR and is required to optimally arrange them for operator DNA recognition by PadR. PadR Y70 also plays a critical role in protein stability based on the results of a denaturation assay. These observations suggest that PadR Y70 is a canonical residue of the PadR family that contributes to protein stability and DNA binding.
Collapse
Affiliation(s)
- Sun Cheol Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|