1
|
Saleh RO, Al-Hawary SIS, Hammoud A, Hjazi A, Ayad Abdulrazzaq S, Rajput P, Alawsi T, Alnajar MJ, Alawadi A. The long non-coding RNAs (lncRNA) in the pathogenesis of gastric cancer cells: molecular mechanisms and involvement miRNAs. Mol Biol Rep 2024; 51:615. [PMID: 38704760 DOI: 10.1007/s11033-024-09546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
A complex sequence of occurrences, including host genetic vulnerability, Helicobacter pylori infection, and other environmental variables, culminate in gastric cancer (GC). The development of several genetic and epigenetic changes in oncogenes and tumor suppressor genes causes dysregulation of several signaling pathways, which upsets the cell cycle and the equilibrium between cell division and apoptosis, leading to GC. Developments in computational biology and RNA-seq technology enable quick detection and characterization of long non-coding RNAs (lncRNAs). Recent studies have shown that long non-coding RNAs (lncRNAs) have multiple roles in the development of gastric cancer. These lncRNAs interact with molecules of protein, RNA, DNA, and/or combinations. This review article explores several gastric cancer-associated lncRNAs, such as ADAMTS9-AS2, UCA1, XBP-1, and LINC00152. These various lncRNAs could change GC cell apoptosis, migration, and invasion features in the tumor microenvironment. This review provides an overview of the most recent research on lncRNAs and GC cell apoptosis, migration, invasion, and drug resistance, focusing on studies conducted in cancer cells and healthy cells during differentiation.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia.
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait City, Kuwait.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences , Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Pranchal Rajput
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Taif Alawsi
- Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al-Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Guo Z, Bergeron KF, Mounier C. Oleate Promotes Triple-Negative Breast Cancer Cell Migration by Enhancing Filopodia Formation through a PLD/Cdc42-Dependent Pathway. Int J Mol Sci 2024; 25:3956. [PMID: 38612766 PMCID: PMC11012533 DOI: 10.3390/ijms25073956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| |
Collapse
|
3
|
Nakatake M, Kurosaki H, Nakamura T. Histone deacetylase inhibitor boosts anticancer potential of fusogenic oncolytic vaccinia virus by enhancing cell-cell fusion. Cancer Sci 2024; 115:600-610. [PMID: 38037288 PMCID: PMC10859623 DOI: 10.1111/cas.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Oncolytic viruses have two anticancer functions: direct oncolysis and elicitation of antitumor immunity. We previously developed a novel fusogenic oncolytic vaccinia virus (FUVAC) from a non-fusogenic vaccinia virus (VV) and, by remodeling the tumor immune microenvironment, we demonstrated that FUVAC induced stronger oncolysis and antitumor immune responses compared with non-fusogenic VV. These functions depend strongly on cell-cell fusion induction. However, FUVAC tends to have decreased fusion activity in cells with low virus replication efficacy. Therefore, another combination strategy was required to increase cell-cell fusion in these cells. Histone deacetylase (HDAC) inhibitors suppress the host virus defense response and promote viral replication. Therefore, in this study, we selected an HDAC inhibitor, trichostatin A (TSA), as the combination agent for FUVAC to enhance its fusion-based antitumor potential. TSA was added prior to FUVAC treatment of murine tumor B16-F10 and CT26 cells. TSA increased the replication of both FUVAC and parental non-fusogenic VV. Moreover, TSA enhanced cell-cell fusion and FUVAC cytotoxicity in these tumor cells in a dose-dependent manner. Transcriptome analysis revealed that TSA-treated tumors showed altered expression of cellular component-related genes, which may affect fusion tolerance. In a bilateral tumor-bearing mouse model, combination treatment of TSA and FUVAC significantly prolonged mouse survival compared with either treatment alone or in combination with non-fusogenic VV. Our findings demonstrate that TSA is a potent enhancer of cell-cell fusion efficacy of FUVAC.
Collapse
Affiliation(s)
- Motomu Nakatake
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Hajime Kurosaki
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Takafumi Nakamura
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| |
Collapse
|
4
|
Wang Y, Wang J, Gao J, Ding M, Li H. The expression of SERPINE1 in colon cancer and its regulatory network and prognostic value. BMC Gastroenterol 2023; 23:33. [PMID: 36755247 PMCID: PMC9906885 DOI: 10.1186/s12876-022-02625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/19/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Serpin Peptidase Inhibitor 1 (SERPINE1) promotes cancer progression by making it easier for cancer cells to spread to surrounding normal tissue. We expect to understand the prognostic value and regulatory network of SERPINE1 in colon cancer using bioinformatics methods. METHODS The expression of target gene SERPINE1 in varying cancers was analyzed by the Tumor Immune Estimation Resource (TIMER) database. SERPINE1 expression in Colon Adenocarcinoma and normal tissue samples was assessed by starBase and UALCAN databases. SERPINE1 expression in clinical tissues was assayed using quantitative reverse transcription Polymerase Chain Reaction (qRT-PCR). SERPINE1 expression was detected in colon cancer patients with various clinical features (age, gender, nodal metastasis status, race, stages, and subtype) using analysis of variance. Survival curve was used to analyze the effect of high and low expression of SERPINE1 on the survival time of patients with different clinical phenotypes. Gene Set Enrichment Analysis (GSEA) was conducted on the results of LinkFinder calculation using LinkInterpreter module, which was combined with Pearson correlation analysis to obtain the kinase targets and miRNA targets, transcription factor targets, and corresponding signaling pathways associated with SERPINE1. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on GSEA result. Finally, Gene Multiple Association Network Integration Algorithm (GeneMANIA) was utilized to establish a network of genes related to the kinases MAPK1, miR-18a, and SRF_Q, and biological functions were analyzed. RESULTS Based on TIMER, starBase, and UALCAN databases, SERPINE1 was found to be remarkably highly expressed in colon cancer patients, which was further verified by clinical tissue. It was also associated with different clinical features (nodal metastasis status, stages, subtypes). Additionally, survival analysis showed that patients with low expression of SERPINE1 had a longer survival time, suggesting that SERPINE1 was a prognostic risk factor for colon cancer. Pearson correlation analysis revealed that the expression of Integrin Alpha 5 (ITGA5), Matrix Metallopeptidase 19 (MMP19), and ADAM Metallopeptidase with Thrombospondin Type 1 Motif, 4 (ADAMTS4) had the highest correlation with that of SERPINE1. The GSEA results indicated that these genes were mainly enriched in the pathways of RNA expression and kinases. Finally, GeneMANIA analysis was introduced to construct the molecular network of SERPINE1. CONCLUSION Overall, our bioinformatics analyses comprehensively described the networks involved SERPINE1 in colon cancer and the potentially associated molecular mechanisms.
Collapse
Affiliation(s)
- Yigang Wang
- Anus and Intestine Surgery, Tangshan Central Hospital, Tangshan, 063000 Hebei China
| | - Jinyan Wang
- Anus and Intestine Surgery, Tangshan Central Hospital, Tangshan, 063000 Hebei China
| | - Jianchao Gao
- Anus and Intestine Surgery, Tangshan Central Hospital, Tangshan, 063000 Hebei China
| | - Mei Ding
- Anus and Intestine Surgery, Tangshan Central Hospital, Tangshan, 063000 Hebei China
| | - Hua Li
- Department of Gastrointestinal Surgery, Tangshan Central Hospital, Tangshan Youyi Road and Changning Road Interchange Westbound 300 Meters, Tangshan, 063000, China.
| |
Collapse
|
5
|
Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, Sekawi Z. The evaluation expression of non-coding RNAs in response to HSV-G47∆ oncolytic virus infection in glioblastoma multiforme cancer stem cells. J Neurovirol 2022; 28:566-582. [PMID: 35951174 DOI: 10.1007/s13365-022-01089-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Mehdi Shafa
- Cell Therapy process development, Lonza Houston Inc, Houston, TX, USA
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia.
| |
Collapse
|
6
|
Ling Q, Zheng B, Chen X, Ye S, Cheng Q. The employment of vaccinia virus for colorectal cancer treatment: A review of preclinical and clinical studies. Hum Vaccin Immunother 2022; 18:2143698. [PMID: 36369829 DOI: 10.1080/21645515.2022.2143698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading malignancies that causes death worldwide. Cancer vaccines and oncolytic immunotherapy bring new hope for patients with advanced CRC. The capability of vaccinia virus (VV) in carrying foreign genes as antigens or immunostimulatory factors has been demonstrated in animal models. VV of Wyeth, Western Reserve, Lister, Tian Tan, and Copenhagen strains have been engineered for the induction of antitumor response in multiple cancers. This paper summarized the preclinical and clinical application and development of VV serving as cancer vaccines and oncolytic vectors in CRC treatment. Additionally, the remaining challenges and future direction are also discussed.
Collapse
Affiliation(s)
- Qiaoyun Ling
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xudong Chen
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Shaoshun Ye
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Quan Cheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Linc00261 Inhibited High-Grade Serous Ovarian Cancer Progression through miR-552-ATG10-EMT Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9450353. [PMID: 35465017 PMCID: PMC9019445 DOI: 10.1155/2022/9450353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/05/2022]
Abstract
In recent years, long non-coding RNAs (lncRNAs) play an important role in a multitude of pathways across species; however, their functions are still unknown. In this study, we demonstrate that Linc00261 is downregulation in high-grade serous ovarian cancer (HGSOC) and can inhibit cell proliferation and migration of high-grade serous ovarian cancer cells. We further validate the targeting interactions among Linc00261, miR-552, and ATG10. Interestingly, they all play important roles for regulating epithelial-mesenchymal transition (EMT) progression. Collectively, these findings suggest that Linc00261, a mediator of EMT progression, can target oncogenic miR-552, elevating ATG10 expression, to prevent high-grade serous ovarian cancer tumorigenesis and may serve as a potential novel therapeutic target.
Collapse
|
8
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23042166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
|
9
|
Chen Z, Xu C, Pan X, Cheng G, Liu M, Li J, Mei Y. lncRNA DSCR8 mediates miR-137/Cdc42 to regulate gastric cancer cell proliferation, invasion, and cell cycle as a competitive endogenous RNA. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:468-482. [PMID: 34553033 PMCID: PMC8430047 DOI: 10.1016/j.omto.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
lncRNA DSCR8 (Down syndrome critical region 8) is involved in progression of many cancers, but its specific role in gastric cancer (GC) is still unclear. Here, qRT-PCR detected upregulated expression of DSCR8 and Cdc42 and downregulated expression of miR-137 in GC. The protein expression level of Cdc42 in GC was upregulated as tested by western blot. Statistical analysis showed that DSCR8 was closely associated with some malignant clinicopathological features (such as tumor size, metastasis, and stage) in GC patients. Fluorescence in situ hybridization showed that DSCR8 was localized in the nucleus and cytoplasm. Dual-luciferase reporter gene, RNA immunoprecipitation, and biotin pull-down assays showed that DSCR8 could bind to miR-137 could bind to Cdc42. In vitro and in vivo assays showed that DSCR8 could promote proliferation, invasion, and the cycle of GC cells and inhibit cell apoptosis. In addition, a rescue experiment showed that DSCR8 regulated progression of GC cells via miR-137. Furthermore, DSCR8 regulated Cdc42 in GC cells by inhibiting miR-137. Taken together, these data indicated that DSCR8 could adsorb miR-137 to reduce its inhibitory effect on Cdc42 expression, thereby promoting the progression of GC cells and regulating the cell cycle. These results provide a novel direction for DSCR8 as a target of GC.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Chaobo Xu
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Xiaoming Pan
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Ming Liu
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Jiaxin Li
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Yijun Mei
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| |
Collapse
|
10
|
Research updates on the clinical implication of long noncoding RNA in digestive system cancers and chemoresistance. 3 Biotech 2021; 11:423. [PMID: 34603923 DOI: 10.1007/s13205-021-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation, apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as 'translational noise' before 1980s. It has been reported that lncRNAs are aberrantly expressed in different cancers, either as oncogene or tumor suppressor gene. Therefore, more and more lncRNAs are recognized as potential diagnostic biomarkers and/or therapeutic targets. As competitive endogenous RNA, lncRNAs can interact with microRNA to alter the expression of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and chemoresistance. This review comprehensively summarizes the functions and clinical relevance of lncRNAs in digestive system cancers, especially as a potential tool to overcome chemoresistance.
Collapse
|
11
|
Zeng H, Li L, Gao Y, Wu G, Hou Z, Liu S. Long noncoding RNA UCA1 regulates HCV replication and antiviral response via miR-145-5p/SOCS7/IFN pathway. Int J Biol Sci 2021; 17:2826-2840. [PMID: 34345210 PMCID: PMC8326114 DOI: 10.7150/ijbs.59227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infection involves a variety of viral and host factors, which leads to the dysregulation of number of relevant genes including long noncoding RNAs (LncRNAs). LncRNA urothelial carcinoma-associated 1 (UCA1) has been reported to be upregulated in HCV-infected individuals. In a bid to elucidate on the contribution of UCA1 on HCV replication, we infected Huh7.5 cells with cell culture-derived HCV and found that UCA1 expression was elevated in time- and dose-dependent manners. Functionally, UCA1 knockdown by siRNA upregulated interferon (IFN) responses, thereby increasing the expression of interferon-stimulating genes (ISGs), and subsequently suppressing HCV replication. Bioinformatics analysis and experimental results indicated that, functioning as competitive endogenous RNA, UCA1 could sponge microRNA (miR)-145-5p, which targeted suppressor of cytokine signaling 7 (SOCS7) mRNA and subsequently mediated SOCS7 silencing. Moreover, SOCS7 protein exerted an inhibitory effect on IFN responses, thereby facilitating HCV replication. Taken together, at first, our findings demonstrate that UCA1 can counteract the expression of miR-145-5p, thereby upregulating the level of SOCS7, and in turn leading to the suppression of antiviral response in Huh7.5 cells.
Collapse
Affiliation(s)
- Haiyan Zeng
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100010, China
| | - Yi Gao
- Department of Infectious Disease, the Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Guojun Wu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Zhouhua Hou
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuiping Liu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
12
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
13
|
Emerging role of lncRNAs in the regulation of Rho GTPase pathway. Biomed Pharmacother 2021; 140:111731. [PMID: 34015583 DOI: 10.1016/j.biopha.2021.111731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog (Rho) family of small GTPases comprise several proteins with prominent roles in regulation of cell cycle transition, cell migration, and remodeling of actin cytoskeleton. Expression of these proteins is regulated by several factors among them are long non-coding RNAs (lncRNAs). The impact of lncRNAs on Rho GTPases signaling can be exerted through direct modulation of expression of these proteins or influencing expression of miRNAs that negatively regulate Rho GTPases. LINC00974/miR-122/RhoA, MALAT1/miR-429/RhoA, ZFAS1/miR-3924/RhoA/ROCK2, PCAT6/miR-326/RhoA/ROCK, SMILR/miR-141/RhoA/ROCK, DAPK1/miR-182/RhoA, GAS5/miR663a/RhoB, H19/miR-15b/CDC42/PAK1, TDRG1/miR-93/RhoC, TUG1/miR-498/CDC42, UCA1/miR-18a/Cdc42 and UCA1/miR-182/Cdc42 are examples of lncRNAs/miRNAs axes that regulate Rho GTPases. In the present manuscript, we describe the role of lncRNAs on Rho GTPases.
Collapse
|
14
|
Hosseini NF, Manoochehri H, Khoei SG, Sheykhhasan M. The Functional Role of Long Non-coding RNA UCA1 in Human Multiple Cancers: a Review Study. Curr Mol Med 2021; 21:96-110. [PMID: 32560605 DOI: 10.2174/1566524020666200619124543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
In various cancers, high-grade tumor and poor survival rate in patients with upregulated lncRNAs UCA1 have been confirmed. Urothelial carcinoma associated 1 (UCA1) is an oncogenic non-coding RNA with a length of more than 200 nucleotides. The UCA1 regulate critical biological processes that are involved in cancer progression, including cancer cell growth, invasion, migration, metastasis, and angiogenesis. So It should not surprise that UCA1 overexpresses in variety of cancers type, including pancreatic cancer, ovarian cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, endometrial cancer, cervical cancer, bladder cancer, adrenal cancer, hypopharyngeal cancer, oral cancer, gallbladder cancer, nasopharyngeal cancer, laryngeal cancer, osteosarcoma, esophageal squamous cell carcinoma, renal cell carcinoma, cholangiocarcinoma, leukemia, glioma, thyroid cancer, medulloblastoma, hepatocellular carcinoma and multiple myeloma. In this article, we review the biological function and regulatory mechanism of UCA1 in several cancers and also, we will discuss the potential of its as cancer biomarker and cancer treatment.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Cheng H, Sharen G, Wang Z, Zhou J. LncRNA UCA1 Enhances Cisplatin Resistance by Regulating CYP1B1-mediated Apoptosis via miR-513a-3p in Human Gastric Cancer. Cancer Manag Res 2021; 13:367-377. [PMID: 33469378 PMCID: PMC7813468 DOI: 10.2147/cmar.s277399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chemoresistance contributes to treatment failure of gastric cancer (GC) patients but the molecular mechanism of chemoresistance in GC is still unclear. Long-chain noncoding RNA (lncRNA) urothelial cancer associated 1 (UCA1) is associated with resistance to chemotherapy drugs. Methods We detected the expression of UCA1 in 53 pairs of GC tumor tissue and adjacent normal tissue, human normal gastric mucosa cells (GES-1) and human GC cells (HGC-27, SNU-5, AGS, SGC-7901, and NCI-N87) using RT-qPCR. Small RNA interference technology was used to knock down the expression of UCA1 in gastric cancer cells. CCK8 solution was used to detect cell viability. Flow cytometry was used to detect apoptosis, and Western blotting was used to detect protein expression. Results UCA1 was highly expressed in GC tissues and cells, and knockdown of UCA1 increased chemosensitivity to cisplatin by inducing cell apoptosis. Furthermore, UCA1 promoted CYP1B1 expression by binding to miR-513a-3p in human GC cells in vitro, and UCA1/CYP1B1 expression was negatively related to miR-513a-3p expression, while UCA1 expression was positively related to CYP1B1 expression in human GC tissues. Moreover, overexpression of miR-513a-3p or knockdown of CYP1B1 increased chemosensitivity to cisplatin, and knockdown of miR-513a-3p or overexpression of CYP1B1 decreased chemosensitivity to cisplatin by inducing cell apoptosis in human GC cells. Importantly, overexpression of CYP1B1 reduced chemosensitivity to cisplatin which increased by knockdown of UCA1, and knockdown of CYP1B1 increased chemosensitivity to cisplatin which decreased by knockdown of miR-513a-3p in human GC cells. Conclusion The lncRNA UCA1/miR-513a-3p/CYP1B1 axis regulates cisplatin resistance in human GC cells; hence, it is a potential target for treating chemoresistance in GC.
Collapse
Affiliation(s)
- Haidong Cheng
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, People's Republic of China
| | - Gaowa Sharen
- Department of Pathological Anatomy, College of Basic Medicine of Inner Mongolia Medical University, Hohhot 010059, People's Republic of China
| | - Zhaoyang Wang
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, People's Republic of China
| | - Jing Zhou
- Department of Pharmacology, College of Basic Medicine of Inner Mongolia Medical University, Hohhot 010059, People's Republic of China
| |
Collapse
|
16
|
Affiliation(s)
- Lucy Ginn
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Qinghua Wu
- College of Life Science Yangtze University Jingzhou Hubei China
- Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove East Bohemia Czech Republic
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| |
Collapse
|
17
|
Li X, Lv F, Li F, Du M, Liang Y, Ju S, Liu Z, Zhou B, Wang B, Gao Y. LINC01089 Inhibits Tumorigenesis and Epithelial-Mesenchymal Transition of Non-small Cell Lung Cancer via the miR-27a/SFRP1/Wnt/β-catenin Axis. Front Oncol 2020; 10:532581. [PMID: 33282723 PMCID: PMC7705259 DOI: 10.3389/fonc.2020.532581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as regulators of gene expression and play critical regulatory roles in diverse biological functions and diseases, including cancer. In this study, we report the downregulation of LINC01089 in non-small cell lung cancer (NSCLC) samples, relative to adjacent non-tumor tissues, and demonstrate its role in the inhibition of proliferation, migration, and epithelial–mesenchymal transition (EMT) of NSCLC cells. Mechanistic analysis indicates that LINC01089 acts as a sponge for miR-27a, regulating its expression in NSCLC. Interestingly, LINC01089 mediated the upregulation of SFRP1 expression by inhibiting the Wnt/β-catenin–EMT pathway and inhibiting the epithelial–mesenchymal transition of NSCLC via sponging miR-27a. Overall, our findings highlight LINC01089’s tumorigenic role and regulatory mechanism in NSCLC, thereby suggesting its potential as a therapeutic target for managing NSCLC.
Collapse
Affiliation(s)
- Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaolong Ju
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Poursheikhani A, Abbaszadegan MR, Kerachian MA. Mechanisms of long non-coding RNA function in colorectal cancer tumorigenesis. Asia Pac J Clin Oncol 2020; 17:7-23. [PMID: 32970938 DOI: 10.1111/ajco.13452] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally. Although a variety of CRC screening methods have been developed, many patients are diagnosed at advanced stages of CRC with tumor invasion and distance metastasis. Several studies have suggested the long noncoding RNAs (lncRNAs) as one of the main contributors in CRC tumorigenesis, although the exact underlying mechanism of lncRNAs in CRC is still unknown. Numerous studies have indicated aberrant expression of lncRNAs in CRC through different modes of action such as cell proliferation, apoptosis, cell cycle, DNA repair response, drug-resistance, migration, and metastasis. Furthermore, lncRNA polymorphisms can influence the risk of CRC development. Accordingly, lncRNAs can be served as promising diagnostic or prognostic biomarkers and also desired therapeutic targets affecting the outcome of patients with CRC. In this review, we summarized the updated and novel evidence that identifies different roles of lncRNAs in the tumorigenesis of CRC.
Collapse
Affiliation(s)
- Arash Poursheikhani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Genetics Research Unit, Reza Radiotherapy, and Oncology Center, Mashhad, Iran
| |
Collapse
|
19
|
Yao M, Xu C, Shen H, Liu T, Wang X, Shao C, Shao S. The regulatory role of miR-107 in Coxsackie B3 virus replication. Aging (Albany NY) 2020; 12:14467-14479. [PMID: 32674073 PMCID: PMC7425430 DOI: 10.18632/aging.103488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Coxsackie B3 virus (CVB3) is a member of small RNA viruses that belongs to the genus Enterovirus of the family Picornaviridae and CVB3 is the main pathogen of acute and chronic viral myocarditis. In this study RT-qPCR was used to determine the expression of miR-107 in CVB3-infected and uninfected HeLa cells. The experimental results show that the level of miR-107 began to rise at 4 h after the infection, and significantly boosted at 6 h. Based on the results of this experiment, we consider that miR-107 expression is related to CVB3 infection. In order to further clarify the effect of miR-107 in the process of CVB3 infection, we studied the effect of miR-107 upstream and downstream target genes on CVB3 replication. Levels of the target RNAs were detected by RT-qPCR after CVB3 infection, and the expression of CVB3 capsid protein VP1 by western blot analysis. Then the virus in the supernatant was quantitated via a viral plaque assay, reflecting the release of the virus. The experimental results showed that miRNA-107 expression is associated with CVB3 replication and proliferation, while KLF4 and BACE1 as the downstream of miR-107 weakened CVB3 replication. Overexpressions of KLF4 and BACE1 negatively regulated CVB3 replication, this effect on CVB3 was completely opposite to that of miR-107. Further experiments revealed that the upstream lncRNA004787, a new lncRNA that had not been reported, was located on chromosome 5, strand - from 37073250 to 37070908 (genome assembly: hg19). We sequenced and studied lncRNA004787 and found that it partially inhibited CVB3 replication. This prompted us to speculate that lncRNA004787 probably impacted the replication by other means. In conclusion, miR-107 interfered with CVB3 replication and release.
Collapse
Affiliation(s)
- Min Yao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chi Xu
- Marshall International Center for Digestive Diseases, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Hongxing Shen
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tingjun Liu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiuping Wang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shihe Shao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.,Marshall International Center for Digestive Diseases, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| |
Collapse
|
20
|
Wang W, Hu W, Wang Y, An Y, Song L, Shang P, Yue Z. Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA. Mol Cancer 2020; 19:18. [PMID: 31996265 PMCID: PMC6988374 DOI: 10.1186/s12943-020-1132-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/05/2020] [Indexed: 01/13/2023] Open
Abstract
Background Accumulating literatures have indicated that long non-coding RNAs (lncRNAs) are potential biomarkers that play key roles in tumor development and progression. Urothelial cancer associated 1 (UCA1) is a novel lncRNA that acts as a potential biomarker and is involved in the development of cancers. However, the molecular mechanism of UCA1 in renal cancer is still needed to further explore. Methods The relative expression level of UCA1 was determined by Real-Time qPCR in a total of 88 patients with urothelial renal cancer and in different renal cancer cell lines. Loss-of-function experiments were performed to investigate the biological roles of UCA1 and miR-182-5p on renal cancer cell proliferation, migration, apoptosis and tumorigenicity. Comprehensive transcriptional analysis, dual-luciferase reporter assay and western blot etc. were performed to explore the molecular mechanisms underlying the functions of UCA1. Results In this study, we found that UCA1 was significantly up-regulated in renal cancer. Moreover, increased UCA1 expression was positively correlated with differentiation and advanced TNM stage. Further experiments demonstrated that knockdown of UCA1 inhibited malignant phenotypes and Notch signal path of renal cancer cells, and miR-182-5p was reverse function as UCA1. UCA1 functioned as a miRNA sponge to positively regulate the expression of Delta-like ligand 4(DLL4) through sponging miR-182-5p and subsequently promoted malignant phenotypes of renal cancer cells, thus UCA1 playing an oncogenic role and miR-182-5p as an antioncogenic one in renal cancer pathogenesis. Conclusion UCA1-miR-182-5p-DLL4 axis is involved in proliferation and progression of renal cancer. Thus, this study demonstrated that UCA1 plays a critical regulatory role in renal cancer cell and UCA1 may serve as a potential diagnostic biomarker and therapeutic target of renal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-1132-x.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ya Wang
- Department of Nephrology, Second Hospital Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Yong An
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Lei Song
- Medical School, Northwest Min Zu University, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Zhongjin Yue
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|