1
|
Park S. Interplay between polygenic variants related immune response and lifestyle factors mitigate the chances of stroke in a genome-wide association study. Br J Nutr 2024; 131:1813-1826. [PMID: 38374659 DOI: 10.1017/s0007114524000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We aimed to investigate the intricate interplay between genetic predisposition and lifestyle factors on stroke. We conducted a comprehensive genome-wide association study to identify the genetic variants linked to stroke in the participants who experienced a stroke event (cases; n 672) and those with no stroke history (non-stroke; n 58 029) in a large hospital-based cohort. Using generalised multifactor dimensionality reduction, we identified genetic variants with interactive effects and constructed polygenic risk scores (PRS) by summing up the risk alleles from the genetic variants. Food intake was measured with a validated semi-quantitative FFQ. No significant differences in stroke incidence were seen in demographic variables between the two groups. Among the metabolic indicators, only serum TAG levels were higher in males with stroke than those without stroke. The daily nutrient intake, dietary inflammation index, glycaemic index, dietary patterns, alcohol consumption, exercise and smoking did not display associations with the OR for stroke. The stroke-linked genetic variants were related to the IL-18 pathway. After accounting for covariates, the PRS derived from the 5-, 6- and 7-SNP models were positively associated with stroke chance with 2·5-, 2·9- and 2·8-fold. Furthermore, interactions between genetic predisposition and dietary components, including energy, carbohydrates, n-3 fatty acids and branched-chain amino acids (BCAA), that affected OR for stroke were observed. A high intake of energy, carbohydrates and BCAA and a low intake of n-3 fatty acids were positively associated with the chances of stroke occurrence. In conclusion, understanding the interaction between genetic variants and lifestyle factors can assist in developing stroke prevention and management strategies.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, ChungNam-Do, 336-795, Asan, South Korea
| |
Collapse
|
2
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Chou HD, Shiah SG, Chuang LH, Wu WC, Hwang YS, Chen KJ, Kang EYC, Yeung L, Nien CY, Lai CC. MicroRNA-152-3p and MicroRNA-196a-5p Are Downregulated When Müller Cells Are Promoted by Components of the Internal Limiting Membrane: Implications for Macular Hole Healing. Int J Mol Sci 2023; 24:17188. [PMID: 38139016 PMCID: PMC10743628 DOI: 10.3390/ijms242417188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Müller cells play a critical role in the closure of macular holes, and their proliferation and migration are facilitated by the internal limiting membrane (ILM). Despite the importance of this process, the underlying molecular mechanism remains underexplored. This study investigated the effects of ILM components on the microRNA (miRNA) profile of Müller cells. Rat Müller cells (rMC-1) were cultured with a culture insert and varying concentrations of ILM component coatings, namely, collagen IV, laminin, and fibronectin, and cell migration was assessed by measuring cell-free areas in successive photographs following insert removal. MiRNAs were then extracted from these cells and analyzed. Mimics and inhibitors of miRNA candidates were transfected into Müller cells, and a cell migration assay and additional cell viability assays were performed. The results revealed that the ILM components promoted Müller cell migration (p < 0.01). Among the miRNA candidates, miR-194-3p was upregulated, whereas miR-125b-1-3p, miR-132-3p, miR-146b-5p, miR-152-3p, miR-196a-5p, miR-542-5p, miR-871-3p, miR-1839-5p, and miR-3573-3p were significantly downregulated (p < 0.05; fold change > 1.5). Moreover, miR-152-3p and miR-196a-5p reduced cell migration (p < 0.05) and proliferation (p < 0.001), and their suppressive effects were reversed by their respective inhibitors. In conclusion, miRNAs were regulated in ILM component-activated Müller cells, with miR-152-3p and miR-196a-5p regulating Müller cell migration and proliferation. These results serve as a basis for understanding the molecular healing process of macular holes and identifying potential new target genes in future research.
Collapse
Affiliation(s)
- Hung-Da Chou
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shine-Gwo Shiah
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Lan-Hsin Chuang
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Ling Yeung
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| |
Collapse
|
4
|
Shelash Al-Hawary SI, Yahya Ali A, Mustafa YF, Margiana R, Maksuda Ilyasovna S, Ramadan MF, Almalki SG, Alwave M, Alkhayyat S, Alsalamy A. The microRNAs (miRs) overexpressing mesenchymal stem cells (MSCs) therapy in neurological disorders; hope or hype. Biotechnol Prog 2023; 39:e3383. [PMID: 37642165 DOI: 10.1002/btpr.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.
Collapse
Affiliation(s)
| | - Anas Yahya Ali
- Department of Nursing, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Marim Alwave
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Safa Alkhayyat
- College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
5
|
Zhu Y, Li M, He Z, Pang X, Du R, Yu W, Zhang J, Bai J, Wang J, Huang X. Evaluating the causal association between microRNAs and amyotrophic lateral sclerosis. Neurol Sci 2023; 44:3567-3575. [PMID: 37261630 DOI: 10.1007/s10072-023-06860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Currently, miRNAs are involved in the development of amyotrophic lateral sclerosis (ALS), and identifying circulating miRNAs that are causally associated with ALS risk as biomarkers is imperative. METHODS We performed a two-sample Mendelian randomization study to evaluate the causal relationship between miRNAs and ALS. Our analysis was conducted using summary statistics from miRNA expression quantitative loci (eQTL) data of the Framingham Heart Study and ALS genome-wide association studies data. Another independent miRNA data was used to further validate. RESULTS We identified eight unique miRNAs that were causally associated with ALS risk. Using expression data of miRNAs from an independent study, we validated three high-confidence miRNAs, namely hsa-miR-27b-3p, hsa-miR-139-5p, and hsa-miR-152-3p, which might have a potential causal effect on ALS risk. CONCLUSION We suggested that higher levels of hsa-miR-27b-3p and hsa-miR-139-5p had protective effects on ALS, whereas higher levels of hsa-miR-152-3p might act as a risk factor for ALS. The analytical framework presented in this study helps to understand the role of miRNAs in the development of ALS and to identify the biomarkers for ALS risk.
Collapse
Affiliation(s)
- Yahui Zhu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhengqing He
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xinyuan Pang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Rongrong Du
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Wenxiu Yu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinghong Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiongming Bai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Jiao Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Tregub PP, Ibrahimli I, Averchuk AS, Salmina AB, Litvitskiy PF, Manasova ZS, Popova IA. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int J Mol Sci 2023; 24:12899. [PMID: 37629078 PMCID: PMC10454825 DOI: 10.3390/ijms241612899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In recent times, there has been a significant increase in researchers' interest in the functions of microRNAs and the role of these molecules in the pathogenesis of many multifactorial diseases. This is related to the diagnostic and prognostic potential of microRNA expression levels as well as the prospects of using it in personalized targeted therapy. This review of the literature analyzes existing scientific data on the involvement of microRNAs in the molecular and cellular mechanisms underlying the development of pathologies such as Alzheimer's disease, cerebral ischemia and reperfusion injury, and dysfunction of the blood-brain barrier.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alla B. Salmina
- Research Center of Neurology, 125367 Moscow, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Wang X, Liu Y, Lei P. LncRNA HOTAIRM1 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting miR-152-3p/ETS1 axis. Mol Biol Rep 2023:10.1007/s11033-023-08466-6. [PMID: 37171551 DOI: 10.1007/s11033-023-08466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and thus present a tremendous therapeutic potential in osteoporosis. Here, we elucidated the involvement of long non-coding RNAs (lncRNAs) HOXA transcript antisense RNA, myeloid-specific 1 (HOTAIRM1) in the osteogenic differentiation of BMSCs. METHODS AND RESULTS The expression levels of HOTAIRM1, miR-152-3p, ETS proto-oncogene 1 (ETS1), runt-related transcription factor 2 (RUNX2), Osterix, and osteocalcin (OCN) were determined by a quantitative real-time polymerase chain reaction (qRT-PCR) or western blot method. Targeted relationship between miR-152-3p and HOTAIRM1 or ETS1 was confirmed by dual-luciferase reporter and RNA pull-down assays. The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. The extent of the calcium deposition was assessed by Alizarin Red Staining. Our data showed that HOTAIRM1 and ETS1 levels were up-regulated and miR-152-3p expression was down-regulated during osteogenic differentiation of human BMSCs (HBMSCs). HOTAIRM1 overexpression enhanced osteogenic differentiation of HBMSCs, and decreased level of HOTAIRM1 suppressed osteogenic differentiation of HBMSCs. HOTAIRM1 directly targeted miR-152-3p. ETS1 was identified as a direct and functional target of miR-152-3p. Furthermore, HOTAIRM1 functioned as a post-transcriptional regulator of ETS1 expression by miR-152-3p. CONCLUSION The findings in this paper identify HOTAIRM1 as a novel regulator of osteogenic differentiation of BMSCs by the regulation of miR-152-3p/ETS1 axis, uncovering HOTAIRM1 as a promising therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin City, 300052, China
| | - Yan Liu
- Department of Orthopedics, Tianjin Union Medical Center, Tianjin City, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin City, 300052, China.
| |
Collapse
|
8
|
Yarmohammadi F, Ebrahimian Z, Karimi G. MicroRNAs target the PI3K/Akt/p53 and the Sirt1/Nrf2 signaling pathways in doxorubicin-induced cardiotoxicity. J Biochem Mol Toxicol 2023; 37:e23261. [PMID: 36416353 DOI: 10.1002/jbt.23261] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/06/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Doxorubicin (DOX) is used as a chemotherapeutic agent in the treatment of solid tumors. Irreversible cardiotoxicity is the major limitation in the clinical use of DOX. Several microRNAs (miRNAs) with diversified functions are identified that participate in exacerbating or suppressing DOX-induced cardiac damage. The miRNAs are small noncoding regulatory RNAs that modify the expression of the native genes. Studies have demonstrated that miRNAs by modifying the expression of proteins such as PTEN, Akt, and survivin can affect DOX-induced cardiac apoptosis. Moreover, miRNAs can modulate cardiac oxidative stress in DOX treatment through the posttranscriptional regulation of Sirt1, p66shc, and Nrf2 expressions. This manuscript has reviewed the regulation of the PI3K/Akt/p53 and the Sirt1/Nrf2 pathways by miRNAs in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zainab Ebrahimian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Gonzalez JJ, Attaluri S, Shuai B, Gitai DLG, Rao S, Choi JM, Jung SY, Shetty AK. Intranasally administered human MSC-derived extracellular vesicles inhibit NLRP3-p38/MAPK signaling after TBI and prevent chronic brain dysfunction. Brain Behav Immun 2023; 108:118-134. [PMID: 36427808 PMCID: PMC9974012 DOI: 10.1016/j.bbi.2022.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/21/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) leads to lasting brain dysfunction with chronic neuroinflammation typified by nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome activation in microglia. This study probed whether a single intranasal (IN) administration of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) naturally enriched with activated microglia-modulating miRNAs can avert chronic adverse outcomes of TBI. Small RNA sequencing confirmed the enrichment of miRNAs capable of modulating activated microglia in hMSC-EV cargo. IN administration of hMSC-EVs into adult mice ninety minutes after the induction of a unilateral controlled cortical impact injury resulted in their incorporation into neurons and microglia in both injured and contralateral hemispheres. A single higher dose hMSC-EV treatment also inhibited NLRP3 inflammasome activation after TBI, evidenced by reduced NLRP3, apoptosis-associated speck-like protein containing a CARD, activated caspase-1, interleukin-1 beta, and IL-18 levels in the injured brain. Such inhibition in the acute phase of TBI endured in the chronic phase, which could also be gleaned from diminished NLRP3 inflammasome activation in microglia of TBI mice receiving hMSC-EVs. Proteomic analysis and validation revealed that higher dose hMSC-EV treatment thwarted the chronic activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway by IL-18, which decreased the release of proinflammatory cytokines. Inhibition of the chronic activation of NLRP3-p38/MAPK signaling after TBI also prevented long-term cognitive and mood impairments. Notably, the animals receiving higher doses of hMSC-EVs after TBI displayed better cognitive and mood function in all behavioral tests than animals receiving the vehicle after TBI. A lower dose of hMSC-EV treatment also partially improved cognitive and mood function. Thus, an optimal IN dose of hMSC-EVs naturally enriched with activated microglia-modulating miRNAs can inhibit the chronic activation of NLRP3-p38/MAPK signaling after TBI and prevent lasting brain dysfunction.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Roxanne L Reger
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Bojana Milutinovic
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Jenny J Gonzalez
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Daniel L G Gitai
- Institute of Biological Sciences and Health, Federal University of Alagoas, Brazil
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Jong M Choi
- Advanced Technology Core, Mass Spectrometry and Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Sung Y Jung
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA.
| |
Collapse
|
10
|
Sun T, Tan L, Liu M, Zeng L, Zhao K, Cai Z, Sun S, Li Z, Liu R. Tilianin improves cognition in a vascular dementia rodent model by targeting miR-193b-3p/CaM- and miR-152-3p/CaMKIIα-mediated inflammatory and apoptotic pathways. Front Immunol 2023; 14:1118808. [PMID: 37153565 PMCID: PMC10155197 DOI: 10.3389/fimmu.2023.1118808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Although vascular dementia (VaD) is the second most prevalent form of dementia, there is currently a lack of effective treatments. Tilianin, isolated from the traditional drug Dracocephalum moldavica L., may protect against ischemic injury by inhibiting oxidative stress and inflammation via the CaMKII-related pathways but with weak affinity with the CaMKII molecule. microRNAs (miRNAs), functioning in post-transcriptional regulation of gene expression, may play a role in the pathological process of VaD via cognitive impairment, neuroinflammatory response, and neuronal dysfunction. This study aimed to investigate the role of tilianin in VaD therapy and the underlying mechanism through which tilianin regulates CaMKII signaling pathways based on miRNA-associated transcriptional action. Methods Rats with 2-vessel occlusion (2VO), a standard model of VaD, were treated with tilianin, vehicle control, and target overexpression or downregulation. High-throughput sequencing, qRT-PCR, and western blot analyses were utilized to identify the downstream target genes and signaling pathways of tilianin involved in VaD. Results Our results showed that tilianin ameliorated cognitive deficits, neurodegeneration, and microglial and astrocytic activation in rats with 2VO. Subsequent high-throughput sequencing and qRT-PCR analyses revealed that tilianin increased the downregulated miR-193b-3p and miR-152-3p levels in the cortex and hippocampus of 2VO rats. Mechanistically, miR-193b-3p targeting CaM and miR-152-3p targeting CaMKIIα were identified to play a role in VaD-associated pathology, inhibiting the p38 MAPK/NF--κB p65 pathway and decreasing TNF-α and IL-6 levels. Further gain- and loss-of-function experiments for these key genes showed that tilianin-exerted cognitive improvement by activating the p38 MAPK/NF--κB p65 and Bcl-2/Bax/caspase-3/PARP pathways in the brain of 2VO rats was abolished by miR-193b-3p and miR-152-3p inhibition. Moreover, CaM and CaMKIIα overexpression eliminated the elevated effects of miR-193b-3p and miR-152-3p on tilianin's protection against ischemic injury through increased inflammatory reactions and apoptotic signaling. Discussion Together, these findings indicate that tilianin improves cognition by regulating the miR-193b-3p/CaM- and miR-152-3p/CaMKIIα-mediated inflammatory and apoptotic pathways, suggesting a potential small-molecule regulator of miRNA associated with inflammatory signaling for VaD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Rui Liu, ; Zhuorong Li,
| |
Collapse
|
11
|
Li F, Zhou F, Yang B. MicroRNA152-3p Protects Against Ischemia/Reperfusion-Induced Bbb Destruction Possibly Targeting the MAP3K2/JNK/c-Jun Pathway. Neurochem Res 2022; 48:1293-1304. [PMID: 36445489 PMCID: PMC10066145 DOI: 10.1007/s11064-022-03828-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
AbstractIn the current study, we reported that overexpression of miR-152-3p effectively ameliorated neurological deficits and protected blood-brain barrier(BBB) integrity in middle cerebral artery occlusion (MCAO) rats. In an in vitro model, the level of miR-152-3p was significantly decreased in bEnd.3 cells after oxygen–glucose deprivation/reperfusion (OGD/R) insult. miR-152-3p overexpressing bEnd.3 cell monolayers were protected from OGD/R-induced microvascular hyperpermeability. The miR-152-3p-mediated protective effect was associated with lower apoptosis of endothelia by negatively modulating the MAP3K2/JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Fei Li
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Jiang T, He Y. Recent Advances in the Role of Nuclear Factor Erythroid-2-Related Factor 2 in Spinal Cord Injury: Regulatory Mechanisms and Therapeutic Options. Front Aging Neurosci 2022; 14:851257. [PMID: 35754957 PMCID: PMC9226435 DOI: 10.3389/fnagi.2022.851257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) is a pleiotropic transcription factor, and it has been documented that it can induce defense mechanisms both oxidative stress and inflammatory injury. At present, more and more evidences show that the Nrf2 signaling pathway is a key pharmacological target for the treatment of spinal cord injury (SCI), and activating the Nrf2 signaling pathway can effectively treat the inflammatory injury and oxidative stress after SCI. This article firstly introduces the biological studies of the Nrf2 pathway. Meanwhile, it is more powerful to explain that activating the Nrf2 signaling pathway can effectively treat SCI by deeply exploring the relationship between Nrf2 and oxidative stress, inflammatory injury, and SCI. In addition, several potential drugs for the treatment of SCI by promoting Nrf2 activation and Nrf2-dependent gene expression are reviewed. And some other treatment strategies of SCI by modulating the Nrf2 pathway are also summarized. It will provide new ideas and directions for the treatment of SCI.
Collapse
Affiliation(s)
- Tianqi Jiang
- Graduate School of Inner Mongolia Medical University, Hohhot, China,Spine Surgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yongxiong He
- Spine Surgery, Inner Mongolia People’s Hospital, Hohhot, China,*Correspondence: Yongxiong He,
| |
Collapse
|
13
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Yan H, Huang W, Rao J, Yuan J. miR-21 regulates ischemic neuronal injury via the p53/Bcl-2/Bax signaling pathway. Aging (Albany NY) 2021; 13:22242-22255. [PMID: 34552038 PMCID: PMC8507259 DOI: 10.18632/aging.203530] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
Focal cerebral ischemia leads to a large number of neuronal apoptosis, and secondary neuronal death is the main cause of cerebral infarction. MicroRNA-21 (miR-21) has been shown to be a strong anti-apoptosis and pro-survival factor in ischemia. However, the precise mechanism of miR-21 in ischemic neuroprotection remains largely unknown. In this study, miR-21 was down-regulated while p53 was up-regulated following ischemia in vitro and in vivo. Overexpression of miR-21 in vitro and in vivo substantially inhibited the expression of p53 following ischemia, while inhibition of miR-21 in vitro and in vivo promoted p53 expression following ischemia. Moreover, the miR-21/p53 axis regulated the expression of Bcl-2/Bax and abolished OGD/R-induced neuronal injury in vitro. Furthermore, overexpression of miR-21 in vivo reduced neuronal death, protected against ischemic damage, and improved neurological functions by inhibiting p53/Bcl-2/Bax signaling, while inhibition of miR-21 enhanced the p53/Bcl-2/Bax signaling and aggravated the ischemic neuronal injury in vivo. Our data uncover a novel mechanism of miR-21 in regulating cerebral ischemic neuronal injury by inhibiting p53/Bcl-2/Bax signaling pathway, which suggests that miR-21/p53 may be attractive therapeutic molecules for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| |
Collapse
|
15
|
An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22179592. [PMID: 34502501 PMCID: PMC8431732 DOI: 10.3390/ijms22179592] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.
Collapse
|
16
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
17
|
Activation of Nrf2 by miR-152 Inhibits Doxorubicin-Induced Cardiotoxicity via Attenuation of Oxidative Stress, Inflammation, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8860883. [PMID: 33574984 PMCID: PMC7857911 DOI: 10.1155/2021/8860883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Doxorubicin (DOX) could trigger congestive heart failure, which largely limited the clinical use of DOX. microRNAs (miRNAs) were closely involved in the pathogenesis of DOX-induced cardiomyopathy. Here, we aimed to investigate the effect of miR-152 on DOX-induced cardiotoxicity in mice. To study this, we used an adeno-associated viral vector to overexpress miR-152 in mice 6 weeks before DOX treatment, using a dose mimicking the concentrations used in the clinics. In response to DOX injection, miR-152 was significantly decreased in murine hearts and cardiomyocytes. After DOX treatment, mice with miR-152 overexpression in the hearts developed less cardiac dysfunction, oxidative stress, inflammation, and myocardial apoptosis. Furthermore, we found that miR-152 overexpression attenuated DOX-related oxidative stress, inflammation, and cell loss in cardiomyocytes, whereas miR-152 knockdown resulted in oxidative stress, inflammation, and cell loss in cardiomyocytes. Mechanistically, this effect of miR-152 was dependent on the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in response to DOX. Notably, Nrf2 deficiency blocked the protective effects of miR-152 against DOX-related cardiac injury in mice. In conclusion, miR-152 protected against DOX-induced cardiotoxicity via the activation of the Nrf2 signaling pathway. These results suggest that miR-152 may be a promising therapeutic target for the treatment of DOX-induced cardiotoxicity.
Collapse
|
18
|
Zheng X, Hermann DM, Bähr M, Doeppner TR. The role of small extracellular vesicles in cerebral and myocardial ischemia-Molecular signals, treatment targets, and future clinical translation. Stem Cells 2021; 39:403-413. [PMID: 33432732 DOI: 10.1002/stem.3329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
The heart and the brain mutually interact with each other, forming a functional axis that is disturbed under conditions of ischemia. Stem cell-derived extracellular vesicles (EVs) show great potential for the treatment of ischemic stroke and myocardial infarction. Due to heart-brain interactions, therapeutic actions of EVs in the brain and the heart cannot be regarded in an isolated way. Effects in each of the two organs reciprocally influence the outcome of the other. Stem cell-derived EVs modulate a large number of signaling pathways in both tissues. Upon ischemia, EVs prevent delayed injury, promote angiogenesis, enhance parenchymal remodeling, and enable functional tissue recovery. The therapeutic effects greatly depend on EV cargos, among which are noncoding RNAs like microRNAs (miRNAs) and proteins, which modulate cell signaling in a differential way that not always corresponds to each other in the two tissues. Interestingly, the same miRNA or protein localized in EVs can modulate different signaling pathways in the ischemic heart and brain, which may have diverse consequences for disease outcomes. Paying careful attention to unveiling these underlying mechanisms may provide new insights into tissue remodeling processes and identify targets for ischemic stroke and myocardial infarction therapies. Some of these mechanisms are discussed in this concise review, and consequences for the clinical translation of EVs are presented.
Collapse
Affiliation(s)
- Xuan Zheng
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
19
|
Li X, Yu J, Ma D, Weng X. Edaravone Improves the Post-traumatic Brain Injury Dysfunction in Learning and Memory by Modulating Nrf2/ARE Signal Pathway. Clinics (Sao Paulo) 2021; 76:e3131. [PMID: 34878029 PMCID: PMC8610218 DOI: 10.6061/clinics/2021/e3131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To investigate the molecular mechanism of edaravone (EDA) in improving the post-traumatic brain injury (TBI) dysfunction in learning and memory. METHODS In vitro and in vivo TBI models were established using hydrogen peroxide (H2O2) treatment for hippocampal nerve stem cells (NSCs) and surgery for rats, followed by EDA treatment. WST 1 measurement, methylthiazol tetrazolium assay, and flow cytometry were performed to determine the activity, proliferation, and apoptosis of NSCs, and malondialdehyde (MDA), lactic dehydrogenase (LDH), and reactive oxygen species (ROS) detection kits were used to analyze the oxides in NSCs. RESULTS Following EDA pretreatment, NSCs presented with promising resistance to H2O2-induced oxidative stress, whereas NSCs manifested significant increases in activity and proliferation and a decrease in apoptosis. Meanwhile, for NSCs, EDA pretreatment reduced the levels of MDA, LDH, and ROS, with a significant upregulation of Nrf2/antioxidant response element (ARE) signaling pathway, whereas for EDA-treated TBI rats, a significant reduction was observed in the trauma area and injury to the hippocampus, with improvement in memory and learning performance and upregulation of Nrf2/ARE signaling pathway. CONCLUSIONS EDA, by regulating the activity of Nrf2/ARE signal pathway, can improve the TBI-induced injury to NSCs and learning and memory dysfunction in rats.
Collapse
Affiliation(s)
| | - Jing Yu
- Corresponding author. E-mail:
| | | | | |
Collapse
|
20
|
Meng M, Zhang R, Han R, Kong Y, Wang R, Hou L. The polysaccharides from the Grifola frondosa fruiting body prevent lipopolysaccharide/d-galactosamine-induced acute liver injury via the miR-122-Nrf2/ARE pathways. Food Funct 2021; 12:1973-1982. [DOI: 10.1039/d0fo03327h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The polysaccharides from Grifola frondosa fruiting body can be used as a potential hepatoprotective agent in the treatment of acute liver injury.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Rui Zhang
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Yu Kong
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Ruhua Wang
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| |
Collapse
|
21
|
Ma P, Zhang C, Huo P, Li Y, Yang H. A novel role of the miR-152-3p/ERRFI1/STAT3 pathway modulates the apoptosis and inflammatory response after acute kidney injury. J Biochem Mol Toxicol 2020; 34:e22540. [PMID: 32583487 DOI: 10.1002/jbt.22540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is one of the most common and serious complications in the development of sepsis. Many microRNAs are closely related to the occurrence, development, and prognosis of sepsis AKI (but the effect and mechanism of miR-152-3p in it is unclear). Meanwhile, the ERBB receptor feedback inhibitor 1 (ERRFI1) has a negative regulatory effect on signal transducer and activator of transcription 3 (STAT3) phosphorylation on uterine epithelial cells. But, the relationship between miR-152-3p and renal function, inflammatory factors, prognosis in AKI, and the mechanism is not clear. Analyzing sepsis-induced AKI rats and the cell model, our results revealed that miR-152-3p was upregulated in septic AKI patients and positively correlated with serum creatinine, urea nitrogen, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α). Downregulation of miR-152-3p with the inhibitor could dramatically attenuate caspase-3, bromodeoxyuridine and IL-1β, and TNF-α in the AKI rats' model. Furthermore, downregulation of miR-152-3p attenuated lipopolysaccharide-induced apoptosis and inflammatory response in HK-2 and HEK293 cells. To further explore the mechanisms, we found ERRFI1 was appreciably downregulated and STAT3 was upregulated in AKI, whereas ERRFI1 was radically upregulated and STAT3 was greatly downregulated after the addition of miR-152-3p inhibitor, no matter in vivo or in vitro. Summarily, our study confirmed that miR-152-3p could promote the expression of STAT3 by targeting ERRFI1, aggravate cell apoptosis and inflammatory response, and thereby aggravate kidney injury in sepsis AKI.
Collapse
Affiliation(s)
- Piyong Ma
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Chunmei Zhang
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Pengfei Huo
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Li
- Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Hailing Yang
- Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Wang K, Ru J, Zhang H, Chen J, Lin X, Lin Z, Wen M, Huang L, Ni H, Zhuge Q, Yang S. Melatonin Enhances the Therapeutic Effect of Plasma Exosomes Against Cerebral Ischemia-Induced Pyroptosis Through the TLR4/NF-κB Pathway. Front Neurosci 2020; 14:848. [PMID: 33013286 PMCID: PMC7461850 DOI: 10.3389/fnins.2020.00848] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Ischemic stroke-induced inflammation and inflammasome-dependent pyroptotic neural death cause serious neurological injury. Nano-sized plasma exosomes have exhibited therapeutic potential against ischemia and reperfusion injury by ameliorating inflammation. To enhance its therapeutic potential in patients with ischemic injury, we isolated exosomes from melatonin-treated rat plasma and assessed the neurological protective effect in a rat model of focal cerebral ischemia. Methods Basal plasma exosomes and melatonin-treated plasma exosomes were isolated and intravenously injected into a rat model of focal cerebral ischemia. Neurological recovery was evaluated by determining the modified neurological severity score (mNSS), infarct volume, and brain water content. Pyroptosis in the ischemic cortex was detected through dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) release, and gasdermin D (GSDMD) cleavage. NLRP3 inflammasome assembly and global inflammatory cytokine secretion were detected by enzyme-linked immunosorbent assay (ELISA) and Western blot assay. In immunized Sprague-Dawley rats, microglia pyroptosis was determined through a positive percentage of IBA1+ and caspase-1 (p20)+ cells. Finally, the microRNA (miRNA) profiles in melatonin-treated plasma exosomes were analyzed by exosome miRNA microarray analysis. Results Melatonin treatment enhanced plasma exosome therapeutic effects against ischemia-induced inflammatory responses and inflammasome-mediated pyroptosis. In addition, we confirmed that ischemic stroke-induced pyroptotic cell death occurred in the microglia and neuron, while the administration of melatonin-treated exosomes further effectively decreased the infarct volume and improved recovery of function via regulation of the TLR4/NF-κB signaling pathway. Finally, the altered miRNA profiles in the melatonin-treated plasma exosomes demonstrated the regulatory mechanisms involved in neurological recovery after ischemic injury. Conclusion This study suggests that nano-sized plasma exosomes with melatonin pretreatment might be a more effective strategy for patients with ischemic brain injury. Further exploration of key molecules in the plasma exosome may provide increased therapeutic value for cerebral ischemic injury.
Collapse
Affiliation(s)
- Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junnan Ru
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengli Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Lv L, Xi HP, Huang JC, Zhou XY. LncRNA SNHG1 alleviated apoptosis and inflammation during ischemic stroke by targeting miR-376a and modulating CBS/H 2S pathway. Int J Neurosci 2020; 131:1162-1172. [PMID: 32532171 DOI: 10.1080/00207454.2020.1782904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a major public health issue causing mortality and disability and is more difficult to treat than other cerebral diseases. Previous study reported that miR-376a was upregulated in the serum of stroke patients, indicating that miR-376a played potential role in occurrence and development of stroke. METHODS IS cell model was induced by oxygen-glucose deprivation (OGD) exposed HCMEC/D3 cells. The mRNA level of SNHG1, miR-376a and inflammatory cytokines were detected by q-PCR. Protein level of CBS, apoptotic proteins were examined by Western blot. Apoptosis was analyzed by flow cytometry, and H2S level was measured by kit. Interaction among lncRNA, miRNA and target gene was validated by luciferase assay. RESULTS Our research revealed that mRNA level of SNHG1 and CBS in HCMEC/D3 cells was downregulated while miR-376a was upregulated under OGD conditions. Further results demonstrated that miR-376a overexpression promoted apoptosis and inflammation while SNHG1 overexpressing alleviated such processes. Mechanistically, SNHG1 directly targeted miR-376a, and CBS was a target of miR-376a. Moreover, SNHG1 exert its function via inhibiting miR-376a to regulate CBS expression. CONCLUSION LncRNA SNHG1 depressed apoptosis and inflammation of IS cell model via inhibiting miR-376a and upregulating CBS/H2S signal. These results show light on underlying mechanisms of IS and provide potential targets for IS therapy.
Collapse
Affiliation(s)
- Li Lv
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, P.R. China
| | - Hai-Peng Xi
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, P.R. China
| | - Jian-Chao Huang
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, P.R. China
| | - Xiang-Yang Zhou
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, P.R. China
| |
Collapse
|
24
|
Yang XL, Cao CZ, Zhang QX. MiR-195 alleviates oxygen-glucose deprivation/reperfusion-induced cell apoptosis via inhibition of IKKα-mediated NF-κB pathway. Int J Neurosci 2020; 131:755-764. [PMID: 32271641 DOI: 10.1080/00207454.2020.1754212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Increasing evidence confirmed that miRNA plays a critical role in the occurrence and development of ischemic stroke. Here, the aim of this study was to examine the function and mechanisms of miR-195 in vascular endothelial cell apoptosis induced by oxygen-glucose deprivation (OGD). METHODS This study intended to use OGD to simulate ischemia in vitro. The mRNA expression of miR-195, IKKα and NF-κB in human umbilical vein endothelial cells (HUVECs) were detected by RT-qPCR. The proliferation and apoptosis ability of HUVECs were evaluated using MTT assay, colony formation assay and flow cytometry, respectively. Western blot was applied to examine related protein expression. The interaction between miR-195 and IKKα was verified by dual-luciferase reporter gene assay. RESULTS OGD significantly inhibited cell viability and induced cell apoptosis in HUVECs. Meanwhile, OGD treatment notably decreased the expression of miR-195, as well as enhanced NF-κB expression. Moreover, miR-195 directly interacted with IKKα and suppressed its expression. Mechanically, overexpression of miR-195 exhibited pro-proliferation and anti-apoptotic effect on HUVECs treated with OGD through targeting IKKα-mediated NF-κB pathway. At the molecular level, through suppressing IKKα/NF-κB pathway, miR-195 inhibited the expression of pro-apoptotic protein Bax and active caspase-3, but increased the expression of anti-apoptotic Bcl-2 in HUVECs. CONCLUSIONS Our finding uncovers the protective effect of miR-195 on the biological behavior of HUVECs via suppression of the NF-κB pathway induced by IKKα, which may provide a new potential strategy for ischemic stroke clinical treatment.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, P. R. China
| | - Cheng-Zhu Cao
- Department of Physiology, Medical College of Qinghai University, Xining, P. R. China
| | - Qing-Xin Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, P. R. China
| |
Collapse
|
25
|
Light exercise without lactate elevation induces ischemic tolerance through the modulation of microRNA in the gerbil hippocampus. Brain Res 2020; 1732:146710. [PMID: 32035888 DOI: 10.1016/j.brainres.2020.146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Previously we studied the possible neuroprotective effects of ischemia-resistant exercise in a gerbil model of transient whole-brain ischemia and evaluated the histology, expression of specific proteins, and brain function under different conditions. The present study investigated the neuroprotective effects of light exercise, without lactate elevation, in a gerbil model of ischemia/reperfusion injury. Transient whole-brain ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. A group of animals was subjected to treadmill exercise before ischemia induction. Hippocampal neuronal damage and miRNA expression, as well as behavioral deficits and plasma lactate levels, were evaluated. Light exercise suppressed hippocampal neuron loss and preserved short-term memory. Moreover, 14 miRNAs (mmu-miR-211-3p, -327, -451b, -711, -3070-3p, -3070-2-3p, -3097-5p, -3620-5p, -6240, -6916-5p, -6944-5p, 7083-5p, -7085-5p, and -7674-5p) were upregulated and 6 miRNAs (mmu-miR-148b-3p, -152-3p, -181c-5p, -299b-5p, -455-3p, and -664-3p) were downregulated due to ischemia. However, the expression of these miRNAs remained unchanged when animals performed light exercise before the ischemic event. Differentially expressed miRNAs regulate multiple biological processes such as inflammation, metabolism, and cell death. These findings suggest that light exercise reduces neuronal death and behavioral deficits after transient ischemia by regulating hippocampal miRNAs.
Collapse
|