1
|
Chen CM, Huang CY, Lai CH, Chen YC, Hwang YT, Lin CY. Neuroprotection effects of kynurenic acid-loaded micelles for the Parkinson's disease models. J Liposome Res 2024; 34:593-604. [PMID: 38779944 DOI: 10.1080/08982104.2024.2346986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Anti-glutamatergic agents may have neuroprotective effects against excitotoxicity that is known to be involved in the pathogenesis of Parkinson's disease (PD). One of these agents is kynurenic acid (KYNA), a tryptophan metabolite, which is an endogenous N-methyl-D-aspartic acid (NMDA) receptor antagonist. However, its pharmacological properties of poor water solubility and limited blood-brain barrier (BBB) permeability rules out its systemic administration in disorders affecting the central nervous system. Our aim in the present study was to investigate the neuroprotective effects of KYNA-loaded micelles (KYNA-MICs) against PD in vitro and in vivo. Lipid-based micelles (MICs) in conjunction with KYNA drug delivery have the potential to enhance the penetration of therapeutic drugs into a diseased brain without BBB obstacles. KYNA-MICs were characterized by particle size (105.8 ± 12.1 nm), loading efficiency (78.3 ± 4.23%), and in vitro drug release (approximately 30% at 24 h). The in vitro experiments showed that KYNA-MICs effectively reduced 2-fold protein aggregation. The in vivo studies revealed that KYNA was successfully delivered by 5-fold increase in neurotoxin-induced PD brains. The results showed significant enhancement of KYNA delivery into brain. We also found that the KYNA-MICs exhibited several therapeutic effects. The KYNA-MICs reduced protein aggregation of an in vitro PD model, ameliorated motor functions, and prevented loss of the striatal neurons in a PD animal model. The beneficial effects of KYNA-MICs are probably explained by the anti-excitotoxic activity of the treatment's complex. As the KYNA-MICs did not induce any appreciable side-effects at the protective dose applied to a chronic PD mouse model, our results demonstrate that KYNA provides neuroprotection and attenuates PD pathology.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Yun Huang
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Hui Lai
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, Taipei, Taiwan
| | - Chung-Yin Lin
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Statistics, National Taipei University, Taipei, Taiwan
| |
Collapse
|
2
|
Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, Hoch MR, Demir ZEF, Tran NM, Schwartz MR, Sheybani ND, Price RJ. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv Rev 2022; 191:114583. [PMID: 36272635 PMCID: PMC9712235 DOI: 10.1016/j.addr.2022.114583] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
The blood brain barrier (BBB) plays a critically important role in the regulation of central nervous system (CNS) homeostasis, but also represents a major limitation to treatments of brain pathologies. In recent years, focused ultrasound (FUS) in conjunction with gas-filled microbubble contrast agents has emerged as a powerful tool for transiently and non-invasively disrupting the BBB in a targeted and image-guided manner, allowing for localized delivery of drugs, genes, or other therapeutic agents. Beyond the delivery of known therapeutics, FUS-mediated BBB opening also demonstrates the potential for use in neuromodulation and the stimulation of a range of cell- and tissue-level physiological responses that may prove beneficial in disease contexts. Clinical trials investigating the safety and efficacy of FUS-mediated BBB opening are well underway, and offer promising non-surgical approaches to treatment of devastating pathologies. This article reviews a range of pre-clinical and clinical studies demonstrating the tremendous potential of FUS to fundamentally change the paradigm of treatment for CNS diseases.
Collapse
Affiliation(s)
- Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Victoria R Breza
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine M Nowak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Vinton W T Cheng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Delaney G Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Anna C Debski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Matthew R Hoch
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Nghi M Tran
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Schwartz
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Lin CY, Huang CY, Chen CM, Liu HL. Focused Ultrasound-Induced Blood–Brain Barrier Opening Enhanced α-Synuclein Expression in Mice for Modeling Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020444. [PMID: 35214176 PMCID: PMC8876143 DOI: 10.3390/pharmaceutics14020444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by α-synuclein (αSNCA) aggregation in dopaminergic neurons. Gradual accumulation of αSNCA aggregates in substantia nigra (SN) diminishes the normal functioning of soluble αSNCA, leading to a loss of dopamine (DA) neurons. In this study, we developed focused ultrasound-targeted microbubble destruction (UTMD)-mediated PD model that could generate the disease phenotype via αSNCA CNS gene delivery. The formation of neuronal aggregates was analyzed with immunostaining. To evaluate the DA cell loss, we used tyrosine hydroxylase immunostaining and HPLC analysis on DA and its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). This loss of DA was associated with a dose-dependent impairment in motor function, as assessed by the rotarod motor assessment. We demonstrate that UTMD-induced SNCA expression initiates αSNCA aggregation and results in a 50% loss of DA in SN. UTMD-related dose-dependent neuronal loss was identified, and it correlates with the degree of impairment of motor function. In comparison to chemical neurotoxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated and conventional intracerebral (IC)-injected animal models of PD, the UTMD-mediated αSNCA-based mouse model offers the advantage of mimicking the rapid development of the PD phenotype. The PD models that we created using UTMD also prove valuable in assessing specific aspects of PD pathogenesis and can serve as a useful PD model for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.L.); (C.-Y.H.)
- Department of Nephrology and Clinical Position Center, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Ching-Yun Huang
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.L.); (C.-Y.H.)
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-M.C.); (H.-L.L.); Tel.: +886-3-3281200 (ext. 8729) (C.-M.C.); +886-2-33665416 (H.-L.L.)
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (C.-M.C.); (H.-L.L.); Tel.: +886-3-3281200 (ext. 8729) (C.-M.C.); +886-2-33665416 (H.-L.L.)
| |
Collapse
|
4
|
Mathew AS, Gorick CM, Price RJ. Multiple regression analysis of a comprehensive transcriptomic data assembly elucidates mechanically- and biochemically-driven responses to focused ultrasound blood-brain barrier disruption. Theranostics 2021; 11:9847-9858. [PMID: 34815790 PMCID: PMC8581408 DOI: 10.7150/thno.65064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Focused ultrasound (FUS) blood brain barrier disruption (BBBD) permits the noninvasive, targeted, and repeatable delivery of drugs to the brain. FUS BBBD also elicits secondary responses capable of augmenting immunotherapies, clearing amyloid-β and hyperphosphorylated tau, and driving neurogenesis. Leveraging these secondary effects will benefit from an understanding of how they correlate to the magnitude of FUS BBBD and are differentially affected by the mechanical and biochemical stimuli imparted during FUS BBBD. Methods: We aggregated 75 murine transcriptomes in a multiple regression framework to identify genes expressed in proportion to biochemical (i.e. contrast MR image enhancement (CE)) or mechanical (i.e. harmonic acoustic emissions from MB-activation (MBA)) stimuli associated with FUS BBBD. Models were constructed to control for potential confounders, such as sex, anesthesia, and sequencing batch. Results: MBA and CE differentially predicted expression of 1,124 genes 6 h or 24 h later. While there existed overlap in the transcripts correlated with MBA vs CE, MBA was principally predictive of expression of genes associated with endothelial reactivity while CE chiefly predicted sterile inflammation gene sets. Over-representation analysis identified transcripts not previously linked to BBBD, including actin filament organization, which is likely important for BBB recovery. Transcripts and pathways associated with neurogenesis, microglial activation, and amyloid-β clearance were significantly correlated to BBBD metrics. Conclusions: The secondary effects of BBBD may have the potential to be tuned by modulating FUS parameters during BBBD, and MBA and CE may serve as independent predictors of transcriptional reactions in the brain.
Collapse
|
5
|
Mathew AS, Gorick CM, Thim EA, Garrison WJ, Klibanov AL, Miller GW, Sheybani ND, Price RJ. Transcriptomic response of brain tissue to focused ultrasound-mediated blood-brain barrier disruption depends strongly on anesthesia. Bioeng Transl Med 2021; 6:e10198. [PMID: 34027087 PMCID: PMC8126816 DOI: 10.1002/btm2.10198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Focused ultrasound (FUS) mediated blood-brain barrier disruption (BBBD) targets the delivery of systemically-administered therapeutics to the central nervous system. Preclinical investigations of BBBD have been performed on different anesthetic backgrounds; however, the influence of the choice of anesthetic on the molecular response to BBBD is unknown, despite its potential to critically affect interpretation of experimental therapeutic outcomes. Here, using bulk RNA sequencing, we comprehensively examined the transcriptomic response of both normal brain tissue and brain tissue exposed to FUS-induced BBBD in mice anesthetized with either isoflurane with medical air (Iso) or ketamine/dexmedetomidine (KD). In normal murine brain tissue, Iso alone elicited minimal differential gene expression (DGE) and repressed pathways associated with neuronal signaling. KD alone, however, led to massive DGE and enrichment of pathways associated with protein synthesis. In brain tissue exposed to BBBD (1 MHz, 0.5 Hz pulse repetition frequency, 0.4 MPa peak-negative pressure), we systematically evaluated the relative effects of anesthesia, microbubbles, and FUS on the transcriptome. Of particular interest, we observed that gene sets associated with sterile inflammatory responses and cell-cell junctional activity were induced by BBBD, regardless of the choice of anesthesia. Meanwhile, gene sets associated with metabolism, platelet activity, tissue repair, and signaling pathways, were differentially affected by BBBD, with a strong dependence on the anesthetic. We conclude that the underlying transcriptomic response to FUS-mediated BBBD may be powerfully influenced by anesthesia. These findings raise considerations for the translation of FUS-BBBD delivery approaches that impact, in particular, metabolism, tissue repair, and intracellular signaling.
Collapse
Affiliation(s)
- Alexander S. Mathew
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Catherine M. Gorick
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - E. Andrew Thim
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - William J. Garrison
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Alexander L. Klibanov
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Internal Medicine, Cardiovascular DivisionUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - G. Wilson Miller
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Natasha D. Sheybani
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Richard J. Price
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|