1
|
Armstrong C, Ganasamurthy S, Wigley K, Mercier C, Wakelin S. The microorganisms and metabolome of Pinus radiata Pollen. ENVIRONMENTAL MICROBIOME 2024; 19:103. [PMID: 39696657 DOI: 10.1186/s40793-024-00656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Pollen is a crucial source of nutrients and energy for pollinators. It also provides a unique habitat and resource for microbiota. Previous research on the microbiome of pollen has largely focused on angiosperm systems, with limited research into coniferous gymnosperms. This study characterises the pollen microbiome and metabolome associated with one of the world's most widely grown tree species, Pinus radiata. Trees were sampled from locations across Canterbury, New Zealand. Repeated collections were undertaken in 2020 and 2021. RESULTS Metabolomic analysis revealed the main compounds present on P. radiata pollen to be amino acids (principally proline), and carbohydrates (fructose, glucose, and sucrose). Although phenolic compounds such as ρ-coumaric acid and catechin, and terpenoids such as dehydroabietic acid, were present at low concentrations, their strong bioactive natures mean they may be important in ecological filtering of microbiome communities on pollen. The P. radiata pollen microbiome was richer in fungal taxa compared with bacteria, which differs from many angiosperm species. Geographic range and annual variation were evaluated as drivers of microbiome assembly. Neither sampling location (geographic range) nor annual variation significantly influenced the fungal community which exhibited remarkable conservation across samples. However, some bacterial taxa exhibited sensitivity to geographic distances and yearly variations, suggesting a secondary role of these factors for some taxa. A core microbiome was identified in P. radiata pollen, characterized by a consistent presence of specific fungal and bacterial taxa across samples. While the dominant phyla, Proteobacteria and Ascomycota, align with findings from other pollen microbiome studies, unique core members were unidentified at genus level. CONCLUSION This tree species-specific microbiome assembly emphasizes the crucial role of the host plant in shaping the pollen microbiome. These findings contribute to a deeper understanding of pollen microbiomes in gymnosperms, shedding light on the need to look further at their ecological and functional roles.
Collapse
|
2
|
Nikolić V, Žilić S, Simić M, Šavikin K, Stević T, Živković J, Sarić B, Milovanović D, Kandić Raftery V. Characterization and Potential Food Applications of Oat Flour and Husks from Differently Colored Genotypes as Novel Nutritional Sources of Bioactive Compounds. Foods 2024; 13:3853. [PMID: 39682925 DOI: 10.3390/foods13233853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Oats are gluten-free cereals rich in dietary fiber, β-glucans, phenolic acids, flavonoids, carotenoids, vitamin E, and phytosterols. They have been used in traditional medicine for centuries to treat hyperacidity, acute pancreatitis, burns, and skin inflammation. This study assessed the nutritional and phenolic profile of oat flour (OF) and ground oat husks (OHs) from white, brown, and black hulled oat genotypes, as well as the antioxidant and antimicrobial activity of their extracts. The extracts were tested on six strains of gastrointestinal tract pathogens. OF samples had, on average, a high protein content (15.83%), fat content (6.27%), and β-glucan content (4.69%), while OH samples were rich in dietary fiber. OHs had significantly higher average total phenolic compounds compared to OF and had twice as high antioxidant capacity. Ferulic acid was predominant in all samples, followed by p-coumaric, isoferulic, vanillic, and syringic acid. The traditionally prepared OH extracts manifested the best bactericidal activity against Listeria monocytogenes, Escherichia coli, and Staphylococcus haemolyticus, while Salmonella typhimurium was the least sensitive to the bactericidal effect of all the investigated samples. Both OF and powdered OHs have potential applications in the functional food industry and pharmacy due to their bioactive compounds, their biological activity, as well as their overall nutritional profile.
Collapse
Affiliation(s)
- Valentina Nikolić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Slađana Žilić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Marijana Simić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Katarina Šavikin
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Tatjana Stević
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Beka Sarić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Danka Milovanović
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Vesna Kandić Raftery
- Breeding Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| |
Collapse
|
3
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
4
|
Li L, Xie G, Dong P, Tang H, Wu L, Zhang L. Anticyanobacterial effect of p-coumaric acid on Limnothrix sp. determined by proteomic and metabolomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171632. [PMID: 38471589 DOI: 10.1016/j.scitotenv.2024.171632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Regulating photosynthetic machinery is a powerful but challenging strategy for selectively inhibiting bloom-forming cyanobacteria, in which photosynthesis mainly occurs in thylakoids. P-coumaric acid (p-CA) has several biological properties, including free radical scavenging and antibacterial effects, and studies have shown that it can damage bacterial cell membranes, reduce chlorophyll a in cyanobacteria, and effectively inhibit algal growth at concentrations exceeding 0.127 g/L. Allelochemicals typically inhibit cyanobacteria by inhibiting photosynthesis; however, research on inhibiting harmful algae using phenolic acids has focused mainly on their inhibitory and toxic effects and metabolite levels, and the molecular mechanism by which p-CA inhibits photosynthesis remains unclear. Thus, we examined the effect of p-CA on the photosynthesis of Limnothrix sp. in detail. We found that p-CA inhibits algal growth and damages photosynthesis-related proteins in Limnothrix sp., reduces carotenoid and allophycocyanin levels, and diminishes the actual quantum yield of Photosystem II (PSII). Moreover, p-CA significantly altered algal cell membrane protein systems, and PSII loss resulting from p-CA exposure promoted reactive oxygen species production. It significantly altered algae cell membrane protein systems. Finally, p-CA was found to be environmentally nontoxic; 80 % of 48-h-old Daphnia magna larvae survived when exposed to 0.15 g/L p-CA. These findings provide insight into the mechanism of cyanobacterial inhibition by p-CA, providing a more practical approach to controlling harmful algal blooms.
Collapse
Affiliation(s)
- Lingzhi Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gengxin Xie
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Tang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Liping Wu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Liang Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Ahmad SS, Siddiqui MF, Maqbool F, Ullah I, Adnan F, Albutti A, Alsowayeh N, Rahman Z. Combating Cariogenic Streptococcus mutans Biofilm Formation and Disruption with Coumaric Acid on Dentin Surface. Molecules 2024; 29:397. [PMID: 38257309 PMCID: PMC10818395 DOI: 10.3390/molecules29020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Streptococcus mutans, the primary cause of dental caries, relies on its ability to create and sustain a biofilm (dental plaque) for survival and pathogenicity in the oral cavity. This study was focused on the antimicrobial biofilm formation control and biofilm dispersal potential of Coumaric acid (CA) against Streptococcus mutans on the dentin surface. The biofilm was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay, microtiter plate assay, production of extracellular polymeric substances (EPSs), florescence microscopy (surface coverage and biomass μm2) and three-dimensional (3D) surface plots. It was observed that CA at 0.01 mg/mL reduced bacterial growth by 5.51%, whereases at 1 mg/mL, a significant (p < 0.05) reduction (98.37%) was observed. However, at 1 mg/mL of CA, a 95.48% biofilm formation reduction was achieved, while a 73.45% biofilm dispersal (after 24 h. treatment) was achieved against the preformed biofilm. The MTT assay showed that at 1 mg/mL of CA, the viability of bacteria in the biofilm was markedly (p < 0.05) reduced to 73.44%. Moreover, polysaccharide (EPS) was reduced to 24.80 μg/mL and protein (EPS) to 41.47 μg/mL. ImageJ software (version 1.54 g) was used to process florescence images, and it was observed that the biofilm mass was reduced to 213 (μm2); the surface coverage was reduced to 0.079%. Furthermore, the 3D surface plots showed that the untreated biofilm was highly dense, with more fibril-like projections. Additionally, molecular docking predicted a possible interaction pattern of CA (ligand) with the receptor Competence Stimulating Peptide (UA159sp, PDB ID: 2I2J). Our findings suggest that CA has antibacterial and biofilm control efficacy against S. mutans associated with dental plaque under tested conditions.
Collapse
Affiliation(s)
- Syed Sohail Ahmad
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan; (S.S.A.); (F.M.)
| | | | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan; (S.S.A.); (F.M.)
| | - Ihsan Ullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fazal Adnan
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Noorah Alsowayeh
- Department of Biology, College of Science in Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Ziaur Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, Pakistan;
| |
Collapse
|
6
|
McCain J, Martínez SR, Fungo F, Sakaya A, Cosa G. Two-Pronged Dormant Photosensitizer-Antibiotic Bacterial Inactivation: Mechanism, Dosage, and Cellular Evolution Visualized at the Single-Cell Level. J Am Chem Soc 2023; 145:28124-28136. [PMID: 38095965 DOI: 10.1021/jacs.3c10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Innovative therapeutic approaches are required to battle the rise of antibiotic-resistant bacterial strains. Tapping on reactive oxygen species (ROS) generation in bacteria induced by bactericidal antibiotics, here we report a two-pronged strategy for bacterial inactivation relying on the synergistic combination of a bactericidal antibiotic and newly designed dormant photosensitizers (DoPSs) that activate in the presence of ROS. Intramolecular quenching renders DoPS inert in the presence of light. ROS trapping by DoPS aborts the quenching mechanism unmasking, in equal proportions, singlet oxygen (1O2) sensitization and fluorescence emission. Juxtaposed antioxidant-prooxidant activity built within our DoPS enables (i) initial activation of a few molecules by ROS and (ii) subsequent rapid activation of all DoPS in a bacterium via a domino effect mediated by photogenerated 1O2. Bulk colony forming unit studies employing the minimum inhibitory concentration of the antibiotic illustrate rapid and selective inactivation of Escherichia coli and Pseudomonas aeruginosa only in the presence of light, antibiotic, and DoPS. Single-cell, real-time imaging studies on E. coli reveal an autocatalytic progression of DoPS activation from focal points, providing a unique amplification system for sensing. Single-cell analysis further illustrates the impact of DoPS cellular loading on the rate of DoPS activation and cell death times and on the 1O2 dosing necessary for cell death to occur. Our two-pronged therapy discriminates based on cell metabolites and has the potential to result in lower toxicity, pave the way to reduced drug resistance, and provide insightful mechanistic information about bacterial membrane response to 1O2.
Collapse
Affiliation(s)
- Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Sol R Martínez
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Florencia Fungo
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
7
|
Romero-Benavides JC, Guaraca-Pino E, Duarte-Casar R, Rojas-Le-Fort M, Bailon-Moscoso N. Chenopodium quinoa Willd. and Amaranthus hybridus L.: Ancestral Andean Food Security and Modern Anticancer and Antimicrobial Activity. Pharmaceuticals (Basel) 2023; 16:1728. [PMID: 38139854 PMCID: PMC10747716 DOI: 10.3390/ph16121728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The species Chenopodium quinoa Willd. and Amaranthus hybridus L. are Andean staples, part of the traditional diet and gastronomy of the people of the highlands of Colombia, Ecuador, Peru, Bolivia, northern Argentina and Chile, with several ethnopharmacological uses, among them anticancer applications. This review aims to present updated information on the nutritional composition, phytochemistry, and antimicrobial and anticancer activity of Quinoa and Amaranth. Both species contribute to food security due to their essential amino acid contents, which are higher than those of most staples. It is highlighted that the biological activity, especially the antimicrobial activity in C. quinoa, and the anticancer activity in both species is related to the presence of phytochemicals present mostly in leaves and seeds. The biological activity of both species is consistent with their phytochemical composition, with phenolic acids, flavonoids, carotenoids, alkaloids, terpenoids, saponins and peptides being the main compound families of interest. Extracts of different plant organs of both species and peptide fractions have shown in vitro and, to a lesser degree, in vivo activity against a variety of bacteria and cancer cell lines. These findings confirm the antimicrobial and anticancer activity of both species, C. quinoa having more reported activity than A. hybridus through different compounds and mechanisms.
Collapse
Affiliation(s)
- Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| | - Evelyn Guaraca-Pino
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
- Maestría en Alimentos, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Rodrigo Duarte-Casar
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Marlene Rojas-Le-Fort
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Natalia Bailon-Moscoso
- Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| |
Collapse
|
8
|
Kumar S, Kumar S, Mir MA, Vishnoi VK, Pandey A, Pandey A. Bioefficacy of Sida cordifolia L. phytoextract against foodborne bacteria: optimization and bioactive compound analysis. Future Microbiol 2023; 18:1235-1249. [PMID: 37750761 DOI: 10.2217/fmb-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023] Open
Abstract
Aim: To elucidate the antibacterial activity of Sida cordifolia L. phytoextract, evaluate its polyphenol profile and optimize conditions against certain common foodborne bacteria. Methods: After polarity-based sequential extraction, S. cordifolia phytoextracts were tested for antibacterial potential against antibiotic-resistant bacteria. Box-Behnken design was used to optimize several process parameters and ultra-performance liquid chromatography confirmed the phenolic composition of the best possible outcome. Results: Agar well diffusion and MIC/MBC assay confirmed a strong bactericidal effect of ethanolic (SC04-ET) extract against ampicillin and colistin-resistant Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. The direct interactive effect of optimized conditions showed maximum antibacterial performance and ultra-performance liquid chromatography revealed a high amount of phenolic compounds. Conclusion: The results confirmed that ethanolic extract of S. cordifolia has potent bactericidal action against foodborne bacteria.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - Sandeep Kumar
- Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia
| | - Vineet Kumar Vishnoi
- Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Akanksha Pandey
- Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, India
| |
Collapse
|
9
|
Lima RS, de Carvalho APA, Conte-Junior CA. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit Rev Food Sci Nutr 2023; 63:12453-12475. [PMID: 35875893 DOI: 10.1080/10408398.2022.2101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Brazilian Amazon contains over 30,000 plant species and foods rich in bioactive compounds such as terpenes, phenolic acids, alkaloids, and flavonoids, of potential health benefits (antioxidant, antimicrobial, antiparasitic, anticancer, gastroprotection, prebiotic effects, among others). The existence of residues from non-edible parts of plants (leaves, roots, stems, branches, barks) or fruit wastes (peel, bagasse, seeds) in the agri-food industry and its supply chain is an important challenge in food loss and waste management. In this critical review several Amazon species, focusing on extracts/essential oils from nonedible parts or wastes, were analyzed in terms of phytochemicals, biological activity, and underlying mechanisms. We hope this review emphasizes the importance of Amazon's sustainability initiatives on population health due to the potential shown against cancer, infectious diseases, and prevention of oral diseases. It is urgent to think about the conversion of amazon food wastes and co-products into high-added-value raw materials to develop novel drugs, food packaging systems, or nutraceutical foods.
Collapse
Affiliation(s)
- Rayssa S Lima
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Kiran K, Patil KN. Characterization of Staphylococcus aureus RecX protein: Molecular insights into negative regulation of RecA protein and implications in HR processes. J Biochem 2023; 174:227-237. [PMID: 37115499 DOI: 10.1093/jb/mvad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Homologous recombination (HR) is essential for genome stability and for maintaining genetic diversity. In eubacteria, RecA protein plays a key role during DNA repair, transcription, and HR. RecA is regulated at multiple levels, but majorly by RecX protein. Moreover, studies have shown RecX is a potent inhibitor of RecA and thus acts as an antirecombinase. Staphylococcus aureus is a major food-borne pathogen that causes skin, bone joint, and bloodstream infections. To date, RecX's role in S. aureus has remained enigmatic. Here, we show that S. aureus RecX (SaRecX) is expressed during exposure to DNA-damaging agents, and purified RecX protein directly interacts physically with RecA protein. The SaRecX is competent to bind with single-stranded DNA preferentially and double-stranded DNA feebly. Significantly, SaRecX impedes the RecA-driven displacement loop and inhibits formation of the strand exchange. Notably, SaRecX also abrogates adenosine triphosphate hydrolysis and abolishes the LexA coprotease activity. These findings highlight the role of the RecX protein as an antirecombinase during HR and play a pivotal role in regulation of RecA during the DNA transactions.
Collapse
Affiliation(s)
- Kajal Kiran
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
11
|
Yuan Z, Lu X, Lei F, Sun H, Jiang J, Xing D, Du L. Novel Effect of p-Coumaric Acid on Hepatic Lipolysis: Inhibition of Hepatic Lipid-Droplets. Molecules 2023; 28:4641. [PMID: 37375195 DOI: 10.3390/molecules28124641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
p-coumaric acid (p-CA), a common plant phenolic acid with multiple bioactivities, has a lipid-lowering effect. As a dietary polyphenol, its low toxicity, with the advantages of prophylactic and long-term administration, makes it a potential drug for prophylaxis and the treatment of nonalcoholic fatty liver disease (NAFLD). However, the mechanism by which it regulates lipid metabolism is still unclear. In this study, we studied the effect of p-CA on the down-regulation of accumulated lipids in vivo and in vitro. p-CA increased a number of lipase expressions, including hormone-sensitive lipase (HSL), monoacylglycerol lipase (MGL) and hepatic triglyceride lipase (HTGL), as well as the expression of genes related to fatty acid oxidation, including long-chain fatty acyl-CoA synthetase 1 (ACSL1), carnitine palmitoyltransferase-1 (CPT1), by activating peroxisome proliferator-activated receptor α, and γ (PPARα and γ). Furthermore, p-CA promoted adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and enhanced the expression of the mammalian suppressor of Sec4 (MSS4), a critical protein that can inhibit lipid droplet growth. Thus, p-CA can decrease lipid accumulation and inhibit lipid droplet fusion, which are correlated with the enhancement of liver lipases and genes related to fatty acid oxidation as an activator of PPARs. Therefore, p-CA is capable of regulating lipid metabolism and is a potential therapeutic drug or health care product for hyperlipidemia and fatty liver.
Collapse
Affiliation(s)
- Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xi Lu
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hong Sun
- Institute of Medicinal Plant and Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China
| | - Jingfei Jiang
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongming Xing
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijun Du
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Greene C, Beaman HT, Stinfort D, Ramezani M, Monroe MBB. Antimicrobial PVA Hydrogels with Tunable Mechanical Properties and Antimicrobial Release Profiles. J Funct Biomater 2023; 14:jfb14040234. [PMID: 37103324 PMCID: PMC10146720 DOI: 10.3390/jfb14040234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Hydrogels are broadly employed in wound healing applications due to their high water content and tissue-mimicking mechanical properties. Healing is hindered by infection in many types of wound, including Crohn's fistulas, tunneling wounds that form between different portions of the digestive system in Crohn's disease patients. Owing to the rise of drug-resistant infections, alternate approaches are required to treat wound infections beyond traditional antibiotics. To address this clinical need, we designed a water-responsive shape memory polymer (SMP) hydrogel, with natural antimicrobials in the form of phenolic acids (PAs), for potential use in wound filling and healing. The shape memory properties could allow for implantation in a low-profile shape, followed by expansion and would filling, while the PAs provide localized delivery of antimicrobials. Here, we developed a urethane-crosslinked poly(vinyl alcohol) hydrogel with cinnamic (CA), p-coumaric (PCA), and caffeic (Ca-A) acid chemically or physically incorporated at varied concentrations. We examined the effects of incorporated PAs on antimicrobial, mechanical, and shape memory properties, and on cell viability. Materials with physically incorporated PAs showed improved antibacterial properties with lower biofilm formation on hydrogel surfaces. Both modulus and elongation at break could be increased simultaneously in hydrogels after both forms of PA incorporation. Cellular response in terms of initial viability and growth over time varied based on PA structure and concentration. Shape memory properties were not negatively affected by PA incorporation. These PA-containing hydrogels with antimicrobial properties could provide a new option for wound filling, infection control, and healing. Furthermore, PA content and structure provide novel tools for tuning material properties independently of network chemistry, which could be harnessed in a range of materials systems and biomedical applications.
Collapse
Affiliation(s)
- Caitlyn Greene
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Henry T Beaman
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Darnelle Stinfort
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Maryam Ramezani
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Mary Beth B Monroe
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
13
|
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals (Basel) 2022; 15:1419. [PMID: 36422549 PMCID: PMC9696375 DOI: 10.3390/ph15111419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/01/2023] Open
Abstract
Honey and propolis have recently become the key target of attention for treating certain diseases and promoting overall health and well-being. A high content of flavonoids and phenolic acids found in both honey and propolis contributes to the antioxidant properties to scavenge free radicals. Honey and propolis also exhibited antibacterial effects where they act in two ways, namely the production of hydrogen peroxide (H2O2) and gluconic acids following the enzymatic activities of glucose oxidase, which exerts oxidative damage on the bacteria. Additionally, the anti-inflammatory effects of honey and propolis are mainly by reducing proinflammatory factors such as interleukins and tumor necrosis factor alpha (TNF-α). Their effects on pain were discovered through modulation at a peripheral nociceptive neuron or binding to an opioid receptor in the higher center. The aforementioned properties of honey have been reported to possess potential therapeutic topical application on the exterior parts of the eyes, particularly in treating conjunctivitis, keratitis, blepharitis, and corneal injury. In contrast, most of the medicinal values of propolis are beneficial in the internal ocular area, such as the retina, optic nerve, and uvea. This review aims to update the current discoveries of honey and propolis in treating various ocular diseases, including their antioxidant, anti-inflammatory, antibacterial, and anti-nociceptive properties. In conclusion, research has shown that propolis and honey have considerable therapeutic promise for treating various eye illnesses, although the present study designs are primarily animal and in vitro studies. Therefore, there is an urgent need to translate this finding into a clinical setting.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Siti Nur Farhana Mohammed
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
14
|
Liu Z, Shen Z, Xiang S, Sun Y, Cui J, Jia J. Evaluation of 1,4-naphthoquinone derivatives as antibacterial agents: activity and mechanistic studies. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 17:31. [PMID: 36313056 PMCID: PMC9589524 DOI: 10.1007/s11783-023-1631-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The diverse and large-scale application of disinfectants posed potential health risks and caused ecological damage during the 2019-nCoV pandemic, thereby increasing the demands for the development of disinfectants based on natural products, with low health risks and low aquatic toxicity. In the present study, a few natural naphthoquinones and their derivatives bearing the 1,4-naphthoquinone skeleton were synthesized, and their antibacterial activity against selected bacterial strains was evaluated. In vitro antibacterial activities of the compounds were investigated against Escherichia coli and Staphylococcus aureus. Under the minimum inhibitory concentration (MIC) of ⩽ 0.125 µmol/L for juglone (1a), 5,8-dimethoxy-1,4-naphthoquinone (1f), and 7-methyl-5-acetoxy-1,4-naphthoquinone (3c), a strong antibacterial activity against S. aureus was observed. All 1,4-naphthoquinone derivatives exhibited a strong antibacterial activity, with MIC values ranging between 15.625 and 500 µmol/L and EC50 values ranging between 10.56 and 248.42 µmol/L. Most of the synthesized compounds exhibited strong antibacterial activities against S. aureus. Among these compounds, juglone (1a) showed the strongest antibacterial activity. The results from mechanistic investigations indicated that juglone, a natural naphthoquinone, caused cell death by inducing reactive oxygen species production in bacterial cells, leading to DNA damage. In addition, juglone could reduce the self-repair ability of bacterial DNA by inhibiting RecA expression. In addition to having a potent antibacterial activity, juglone exhibited low cytotoxicity in cell-based investigations. In conclusion, juglone is a strong antibacterial agent with low toxicity, indicating that its application as a bactericidal agent may be associated with low health risks and aquatic toxicity. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11783-023-1631-2 and is accessible for authorized users.
Collapse
Affiliation(s)
- Zhizhuo Liu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhemin Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shouyan Xiang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Sun
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jinping Jia
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
15
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Khan F, Jeong GJ, Tabassum N, Mishra A, Kim YM. Filamentous morphology of bacterial pathogens: regulatory factors and control strategies. Appl Microbiol Biotechnol 2022; 106:5835-5862. [PMID: 35989330 DOI: 10.1007/s00253-022-12128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that when exposed to physical, chemical, and biological stresses in the environment, many bacteria (Gram-positive and Gram-negative) change their morphology from a normal cell to a filamentous shape. The formation of filamentous morphology is one of the survival strategies against environmental stress and protection against phagocytosis or protist predators. Numerous pathogenic bacteria have shown filamentous morphologies when examined in vivo or in vitro. During infection, certain pathogenic bacteria adopt a filamentous shape inside the cell to avoid phagocytosis by immune cells. Filamentous morphology has also been seen in biofilms formed on biotic or abiotic surfaces by certain bacteria. As a result, in addition to protecting against phagocytosis by immune cells or predators, the filamentous shape aids in biofilm adhesion or colonization to biotic or abiotic surfaces. Furthermore, these filamentous morphologies of bacterial pathogens lead to antimicrobial drug resistance. Clinically, filamentous morphology has become one of the most serious challenges in treating bacterial infection. The current review went into great detail about the various factors involved in the change of filamentous morphology and the underlying mechanisms. In addition, the review discussed a control strategy for suppressing filamentous morphology in order to combat bacterial infections. Understanding the mechanism underlying the filamentous morphology induced by various environmental conditions will aid in drug development and lessen the virulence of bacterial pathogens. KEY POINTS: • The bacterial filamentation morphology is one of the survival mechanisms against several environmental stress conditions and protection from phagocytosis by host cells and protist predators. • The filamentous morphologies in bacterial pathogens contribute to enhanced biofilm formation, which develops resistance properties against antimicrobial drugs. • Filamentous morphology has become one of the major hurdles in treating bacterial infection, hence controlling strategies employed for inhibiting the filamentation morphology from combating bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Akanksha Mishra
- Department of Biotechnology, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
17
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
18
|
Malik N, Dhiman P. New Approaches and advancement in drug development from phenolic p-coumaric acid. Curr Top Med Chem 2022; 22:1515-1529. [PMID: 35473545 DOI: 10.2174/0929866529666220426121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
Abstract
P-coumaric acid occurs as a common dietary polyphenol distributed in fruits, vegetables, and cereals in associated and free form. The toxicity profile of the drug is very low and it exhibits many pharmacological actions (antihypertensive, anti-inflammatory, anticancer, antimicrobial activity, antidiabetic, anticancer, and antioxidant effect). P-coumaric acid also acts as a free radical scavenger and inhibits various enzymes which generate free radicals. It is also used as the raw material for the preparation of preservatives, vanillin, sports foods, skin defense agents, and as a cross-linker for the formation of edible films and food gels. The current study is based upon biological effectiveness, molecular docking, SAR, sources of p-coumaric acid, and related derivatives.
Collapse
Affiliation(s)
- Neelam Malik
- Faculty, Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET), Samalkha, Haryana 132102, India
| | - Priyanka Dhiman
- Faculty, Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC), Landran, Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
19
|
Isolation, purification, identification, and discovery of the antibacterial mechanism of ld-phenyllactic acid produced by Lactiplantibacillus plantarum CXG9 isolated from a traditional Chinese fermented vegetable. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Hu J, Ye H, Wang S, Wang J, Han D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front Microbiol 2021; 12:785634. [PMID: 34966370 PMCID: PMC8710666 DOI: 10.3389/fmicb.2021.785634] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
da Costa Lima M, Magnani M, Dos Santos Lima M, de Sousa CP, Dubreuil JD, de Souza EL. Phenolic-rich extracts from acerola, cashew apple and mango by-products cause diverse inhibitory effects and cell damages on enterotoxigenic Escherichia coli. Lett Appl Microbiol 2021; 75:565-577. [PMID: 34687563 PMCID: PMC9539876 DOI: 10.1111/lam.13586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the inhibitory effects of phenolic-rich extracts from acerola (Malpighia emarginata D.C., PEA), cashew apple (Anacardium occidentale L., PEC) and mango (Mangifera indica L., PEM) by-products on distinct enterotoxigenic Escherichia coli (ETEC) strains. The capability of PEA and PEC of impairing various physiological functions of ETEC strains was investigated with multiparametric flow cytometry. Procyanidin B2 , myricetin and p-coumaric acid were the major phenolic compounds in PEA, PEC and PEM, respectively. PEA and PEC had lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (MIC: 31·25 mg ml-1 ; MBC: 62·5 mg ml-1 ) on ETEC strains than PEM (MIC and MIC: >1000 mg ml-1 ). PEA and PEC (15·6, 31·2, 62·5 mg ml-1 ) caused viable count reductions (P < 0·05) on ETEC strains after 24 h of exposure, notably the ≥3 log reductions caused by 62·5 mg ml-1 . The 24 h exposure of ETEC strains to PEA and PEC (31·2, 62·5 mg ml-1 ) led to high sizes of cell subpopulations with concomitant impairments in cell membrane polarization and permeability, as well as in enzymatic, respiratory and efflux activities. PEA and PEC are effective in inhibiting ETEC through a multi-target action mode with disturbance in different physiological functions.
Collapse
Affiliation(s)
- M da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Pernambuco, Brazil
| | - C P de Sousa
- Department of Morphology and Pathology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - J D Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - E L de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
22
|
Zhang LL, He Y, Sheng F, Hu YF, Song Y, Li W, Chen J, Zhang J, Zou L. Towards a better understanding of Fagopyrum dibotrys: a systematic review. Chin Med 2021; 16:89. [PMID: 34530893 PMCID: PMC8447528 DOI: 10.1186/s13020-021-00498-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023] Open
Abstract
Fagopyrum dibotrys (F. dibotrys) (D.Don) H.Hara is a well-known edible herbal medicine in Asian countries. It has been widely used for the treatment of lung diseases, swelling, etc., and is also an important part of many Chinese medicine prescriptions. At present, more than 100 compounds have been isolated and identified from F. dibotrys, and these compounds can be primarily divided into flavonoids, phenols, terpenes, steroids, and fatty acids. Flavonoids and phenolic compounds are considered to be the main active ingredients of F. dibotrys. Previous pharmacological studies have shown that F. dibotrys possesses anti-inflammatory, anti-cancer, anti-oxidant, anti-bacterial, and anti-diabetic activities. Additional studies on functional genes have led to a better understanding of the metabolic pathways and regulatory factors related with the flavonoid active ingredients in F. dibotrys. In this paper, we systemically reviewed the research advances on the phytochemistry and pharmacology of F. dibotrys, as well as the functional genes related to the synthesis of active ingredients, aiming to promote the development and utilization of F. dibotrys.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China.
| | - Ying-Fan Hu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Jiarong Chen
- Affiliated Hospital of Chengdu University, Chengdu, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| |
Collapse
|
23
|
Kiran K, Patil KN. Expression and Characterization of the Staphylococcus aureus RecA protein: A mapping of canonical functions. Protein Expr Purif 2021; 189:105967. [PMID: 34481085 DOI: 10.1016/j.pep.2021.105967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
Recombinases are responsible for homologous recombination (HR), proper genome maintenance, and accurate deoxyribonucleic acid (DNA) duplication. Moreover, HR plays a determining role in DNA transaction processes such as DNA replication, repair, recombination, and transcription. Staphylococcus aureus, an opportunistic pathogen, usually causes respiratory infections such as sinusitis, skin infections, and food poisoning. To date, the role of the RecA gene product in S. aureus remains obscure. In this study, we attempted to map the functional properties of the RecA protein. S. aureus expresses the recA gene product in vivo upon exposure to the DNA-damaging agents, ultraviolet radiation, and methyl methanesulfonate. The recombinant purified S. aureus RecA protein displayed strong single-stranded DNA affinity compared to feeble binding to double-stranded DNA. Interestingly, the RecA protein is capable of invasion and formed displacement loops and readily performed strand-exchange activities with an oligonucleotide-based substrate. Notably, the S. aureus RecA protein hydrolyzed the DNA-dependent adenosine triphosphate and cleaved LexA, showing the conserved function of coprotease. This study provides the functional characterization of the S. aureus RecA protein and sheds light on the canonical processes of homologous recombination, which are conserved in the gram-positive foodborne pathogen S. aureus.
Collapse
Affiliation(s)
- Kajal Kiran
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
24
|
Khan DA, Hamdani SDA, Iftikhar S, Malik SZ, Zaidi NUSS, Gul A, Babar MM, Ozturk M, Turkyilmaz Unal B, Gonenc T. Pharmacoinformatics approaches in the discovery of drug-like antimicrobials of plant origin. J Biomol Struct Dyn 2021; 40:7612-7628. [PMID: 33663347 DOI: 10.1080/07391102.2021.1894982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Medicinal plants have served as an important source for addressing the ailments of humans and animals alike. The emergence of advanced technologies in the field of drug discovery and development has helped in isolating various bioactive phytochemicals and developing them as drugs. Owing to their significant pharmacological benefits and minimum adverse effects, they not only serve as good candidates for therapeutics themselves but also help in the identification and development of related drug like molecules against various metabolic and infectious diseases. The ever-increasing diversity, severity and incidence of infectious diseases has resulted in an exaggerated mortality and morbidity levels. Geno-proteomic mutations in microbes, irrational prescribing of antibiotics, antimicrobial resistance and human population explosion, all call for continuous efforts to discover and develop alternated therapeutic options against the microbes. This review article describes the pharmacoinformatics tools and methods which are currently used in the discovery of bioactive phytochemicals, thus making the process more efficient and effective. The pharmacological aspects of the drug discovery and development process have also been reviewed with reference to the in silico activities. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Duaa Ahmad Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sahar Iftikhar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najam-Us-Sahar Sadaf Zaidi
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Arts & Sciences Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Tuba Gonenc
- Department of Pharmacognosy, Faculty of Pharmacy, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
25
|
Yakimov A, Bakhlanova I, Baitin D. Targeting evolution of antibiotic resistance by SOS response inhibition. Comput Struct Biotechnol J 2021; 19:777-783. [PMID: 33552448 PMCID: PMC7843400 DOI: 10.1016/j.csbj.2021.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-depended mutagenesis and horizontal gene transfer pathways. Compounds able to inhibit SOS response are extremely important to develop new combinatorial strategies aimed to block mutagenesis. The regulators of homologous recombination involved in the processes of DNA repair should be considered as potential targets for blocking. This review highlights the current knowledge of the protein targets for the evolution of antibiotic resistance and the inhibitory effects of some new compounds on this pathway.
Collapse
Affiliation(s)
- Alexander Yakimov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation
| | - Irina Bakhlanova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation.,Kurchatov Genome Center - PNPI, Gatchina, Russian Federation
| | - Dmitry Baitin
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation.,Kurchatov Genome Center - PNPI, Gatchina, Russian Federation
| |
Collapse
|
26
|
Memar MY, Yekani M, Celenza G, Poortahmasebi V, Naghili B, Bellio P, Baghi HB. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci 2020; 262:118562. [PMID: 33038378 DOI: 10.1016/j.lfs.2020.118562] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023]
Abstract
Bacteria have a considerable ability and potential to acquire resistance against antimicrobial agents by acting diverse mechanisms such as target modification or overexpression, multidrug transporter systems, and acquisition of drug hydrolyzing enzymes. Studying the mechanisms of bacterial cell physiology is mandatory for the development of novel strategies to control the antimicrobial resistance phenomenon, as well as for the control of infections in clinics. The SOS response is a cellular DNA repair mechanism that has an essential role in the bacterial biologic process involved in resistance to antibiotics. The activation of the SOS network increases the resistance and tolerance of bacteria to stress and, as a consequence, to antimicrobial agents. Therefore, SOS can be an applicable target for the discovery of new antimicrobial drugs. In the present review, we focus on the central role of SOS response in bacterial resistance mechanisms and its potential as a new target for control of resistant pathogens.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
The recA gene is crucial to mediate colonization of Bacillus cereus 905 on wheat roots. Appl Microbiol Biotechnol 2020; 104:9251-9265. [PMID: 32970180 DOI: 10.1007/s00253-020-10915-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Bacillus cereus 905, one of the plant growth-promoting rhizobacteria (PGPRs), is capable of colonizing wheat roots in a large population size. From previous studies, we learned that the sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) is important for B. cereus 905 to survive in wheat rhizosphere. In this investigation, we demonstrated that deletion of the recA gene, which codes for the recombinase A, significantly reduced MnSOD2 expression at both the mRNA and the protein levels. Through comparison with the wild-type, the ∆recA showed a dramatic decrease in cell survival after exposure to 50 μM paraquat or 15 mM H2O2. Evidence indicated that the recA gene of B. cereus 905 also notably regulated nutrition utilization efficiency, biofilm formation, and swarming motility. The root colonization examination showed that the ∆recA had a 1000- to 2500-fold reduction in colonization on wheat roots, suggesting that RecA plays an indispensable role in effective colonization on wheat roots by B. cereus 905. Taken together, the recA gene positively regulates MnSOD2 production and nutrition utilization and protects B. cereus 905 cells against paraquat and H2O2. Besides, biofilm formation and swarming motility of B. cereus 905 are promoted by RecA. Finally, RecA significantly contributes to wheat root colonization of B. cereus 905. Our results showed the important role of RecA during physiological processes in B. cereus 905, especially for colonization on wheat roots. Our findings will point out a research direction to study the colonization mechanisms of B. cereus 905 in the future and provide potential effective strategy to enhance the biocontrol efficacy of PGPR strains. KEY POINTS : • RecA plays an indispensable role in root colonization of B. cereus.
Collapse
|
28
|
Degeneration of industrial bacteria caused by genetic instability. World J Microbiol Biotechnol 2020; 36:119. [DOI: 10.1007/s11274-020-02901-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
|
29
|
Abstract
Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University
Biosciences Institute, Newcastle University, NE2 4HH Newcastle
upon Tyne, United Kingdom
| | - Michaela Wenzel
- Division of Chemical
Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
30
|
Ojha D, Patil KN. Molecular and functional characterization of the Listeria monocytogenes RecA protein: Insights into the homologous recombination process. Int J Biochem Cell Biol 2019; 119:105642. [PMID: 31698090 DOI: 10.1016/j.biocel.2019.105642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
The recombinases present in the all kingdoms in nature play a crucial role in DNA metabolism processes such as replication, repair, recombination and transcription. However, till date, the role of RecA in the deadly foodborne pathogen Listeria monocytogenes remains unknown. In this study, the authors show that L. monocytogenes expresses recA more than two-fold in vivo upon exposure to the DNA damaging agents, methyl methanesulfonate and ultraviolet radiation. The purified L. monocytogenes RecA protein show robust binding to single stranded DNA. The RecA is capable of forming displacement loop and hydrolyzes ATP, whereas the mutant LmRecAK70A fails to hydrolyze ATP, showing conserved walker A and B motifs. Interestingly, L. monocytogenes RecA and LmRecAK70A perform the DNA strand transfer activity, which is the hallmark feature of RecA protein with an oligonucleotide-based substrate. Notably, L. monocytogenes RecA readily cleaves L. monocytogenes LexA, the SOS regulon and protects the presynaptic filament from the exonuclease I activity. Altogether, this study provides the first detailed characterization of L. monocytogenes RecA and presents important insights into the process of homologous recombination in the gram-positive foodborne bacteria L. monocytogenes.
Collapse
Affiliation(s)
- Debika Ojha
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|