1
|
Jiang L, Zhang L, Shu Y, Zhang Y, Gao L, Qiu S, Zhang W, Dai W, Chen S, Huang Y, Liu Y. Deciphering the role of Enterococcus faecium cytidine deaminase in gemcitabine resistance of gallbladder cancer. J Biol Chem 2024; 300:107171. [PMID: 38492776 PMCID: PMC11007441 DOI: 10.1016/j.jbc.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Gemcitabine-based chemotherapy is a cornerstone of standard care for gallbladder cancer (GBC) treatment. Still, drug resistance remains a significant challenge, influenced by factors such as tumor-associated microbiota impacting drug concentrations within tumors. Enterococcus faecium, a member of tumor-associated microbiota, was notably enriched in the GBC patient cluster. In this study, we investigated the biochemical characteristics, catalytic activity, and kinetics of the cytidine deaminase of E. faecium (EfCDA). EfCDA showed the ability to convert gemcitabine to its metabolite 2',2'-difluorodeoxyuridine. Both EfCDA and E. faecium can induce gemcitabine resistance in GBC cells. Moreover, we determined the crystal structure of EfCDA, in its apo form and in complex with 2', 2'-difluorodeoxyuridine at high resolution. Mutation of key residues abolished the catalytic activity of EfCDA and reduced the gemcitabine resistance in GBC cells. Our findings provide structural insights into the molecular basis for recognizing gemcitabine metabolite by a bacteria CDA protein and may provide potential strategies to combat cancer drug resistance and improve the efficacy of gemcitabine-based chemotherapy in GBC treatment.
Collapse
Affiliation(s)
- Lin Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingxiao Zhang
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Shu
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Zhang
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhua Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenting Dai
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shili Chen
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Huang
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Hamdi A, Horchani M, Jannet HB, Snoussi M, Noumi E, Bouali N, Kadri A, Polito F, De Feo V, Edziri H. In Vitro Screening of Antimicrobial and Anti-Coagulant Activities, ADME Profiling, and Molecular Docking Study of Citrus limon L. and Citrus paradisi L. Cold-Pressed Volatile Oils. Pharmaceuticals (Basel) 2023; 16:1669. [PMID: 38139796 PMCID: PMC10748103 DOI: 10.3390/ph16121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Citrus, which belongs to the Rutaceae family, is a very widespread genus in the Mediterranean Basin. In Tunisia, various parts of these spontaneous or cultivated plants are used in common dishes or in traditional medicine. The purpose of this work was to investigate C. limon and C. paradisi essential oil (EO). The samples were studied for their chemical composition using SPME/MS, as well as their antibacterial and antifungal activities. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) methods were used to evaluate the anticoagulant potentialities. The obtained results show that both essential oils are rich in monoterpenes hydrocarbons, whereby limonene is the main compound in C. paradisi EO (86.8%) and C. limon EO (60.6%). Moreover, C. paradisi EO contains β-pinene (13.3%), sabinene (2.2%) and α-pinene (2.1%). The antibacterial assay of the essential oils showed important bactericidal and fungicidal effects against all strains tested. In fact, the MICs values of C. limon EO ranged from 0.625 to 2.5 mg/mL against all Gram-positive and Gram-negative bacteria, and from 6.25 to 12.5 mg/mL for Candida spp. strains, while C. paradisi EO was more active against all bacteria with low MICs values ranging from 0.192 to 0.786 mg/mL, and about 1.5 mg/mL against Candida species. Both tested Citrus EOs exhibited interesting anticoagulant activities as compared to heparin. The molecular docking approach was used to study the binding affinity and molecular interactions of all identified compounds with active sites of cytidine deaminase from Klebsiella pneumoniae (PDB: 6K63) and the C (30) carotenoid dehydrosqualene synthase from Staphylococcus aureus (PDB: 2ZCQ). The obtained results show that limonene had the highest binding score of -4.6 kcal.mol-1 with 6K63 enzyme, and -6.7 kcal.mol-1 with 2ZCQ receptor. The ADME profiling of the major constituents confirmed their important pharmacokinetic and drug-like properties. Hence, the obtained results highlight the potential use of both C. limon and C. paradisi essential oils as sources of bioactive compounds with antibacterial, antifungal, and anti-coagulant activities.
Collapse
Affiliation(s)
- Assia Hamdi
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.H.); (H.B.J.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.H.); (H.B.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Nouha Bouali
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al Baha University, Al Baha 65527, Saudi Arabia;
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Hayet Edziri
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir 5000, Tunisia;
| |
Collapse
|
3
|
Urbelienė N, Tiškus M, Tamulaitienė G, Gasparavičiūtė R, Lapinskaitė R, Jauniškis V, Sūdžius J, Meškienė R, Tauraitė D, Skrodenytė E, Urbelis G, Vaitekūnas J, Meškys R. Cytidine deaminases catalyze the conversion of N( S, O) 4-substituted pyrimidine nucleosides. SCIENCE ADVANCES 2023; 9:eade4361. [PMID: 36735785 PMCID: PMC9897663 DOI: 10.1126/sciadv.ade4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Cytidine deaminases (CDAs) catalyze the hydrolytic deamination of cytidine and 2'-deoxycytidine to uridine and 2'-deoxyuridine. Here, we report that prokaryotic homo-tetrameric CDAs catalyze the nucleophilic substitution at the fourth position of N4-acyl-cytidines, N4-alkyl-cytidines, and N4-alkyloxycarbonyl-cytidines, and S4-alkylthio-uridines and O4-alkyl-uridines, converting them to uridine and corresponding amide, amine, carbamate, thiol, or alcohol as leaving groups. The x-ray structure of a metagenomic CDA_F14 and the molecular modeling of the CDAs used in this study show a relationship between the bulkiness of a leaving group and the volume of the binding pocket, which is partly determined by the flexible β3α3 loop of CDAs. We propose that CDAs that are active toward a wide range of substrates participate in salvage and/or catabolism of variously modified pyrimidine nucleosides. This identified promiscuity of CDAs expands the knowledge about the cellular turnover of cytidine derivatives, including the pharmacokinetics of pyrimidine-based prodrugs.
Collapse
Affiliation(s)
- Nina Urbelienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Matas Tiškus
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Giedrė Tamulaitienė
- Department of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Ringailė Lapinskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Vykintas Jauniškis
- UAB Biomatter Designs (Biomatter), Žirmūnų st. 139A, 09120 Vilnius, Lithuania
| | - Jurgis Sūdžius
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Rita Meškienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Emilija Skrodenytė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Gintaras Urbelis
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Abstract
Selective modification of heteroatom-containing aromatic structures is in high demand as it permits rapid evaluation of molecular complexity in advanced intermediates. Inspired by the selectivity of deaminases in nature, herein we present a simple methodology that enables the NH2 groups in aminoheterocycles to be conceived as masked modification handles. With the aid of a simple pyrylium reagent and a cheap chloride source, C(sp2)‒NH2 can be converted into C(sp2)‒Cl bonds. The method is characterized by its wide functional group tolerance and substrate scope, allowing the modification of >20 different classes of heteroaromatic motifs (five- and six-membered heterocycles), bearing numerous sensitive motifs. The facile conversion of NH2 into Cl in a late-stage fashion enables practitioners to apply Sandmeyer- and Vilsmeier-type transforms without the burden of explosive and unsafe diazonium salts, stoichiometric transition metals or highly oxidizing and unselective chlorinating agents.
Collapse
|
5
|
Establishment and evaluation of an indirect ELISA for detection of antibodies to goat Klebsiella pneumonia. BMC Vet Res 2021; 17:107. [PMID: 33663505 PMCID: PMC7934495 DOI: 10.1186/s12917-021-02820-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Klebsiella pneumonia, a Gram-negative bacterium belonging to the genus Enterobacter, causes many human and livestock diseases. Notably, infected goats may develop pneumonia, septicemia, which can lead to occasional death, resulting in great economic losses in goat-farming industry. However, there are little systematic methods for detection of goat Klebsiella pneumoniae in livestock production. RESULTS In this study, we developed a Klebsiella pneumoniae goat polyclonal antibody and established an indirect ELISA method to detect the Klebsiella pneumoniae. After screening and optimizing the conditions for detection, we determined the optimal working dilutions of the coated-bacterial antigen, the polyclonal antibody, and the enzyme-labeled secondary antibody that were 1:800 (2.99 × 107 CFU/ml), 1:6400, and 1:5000, respectively. The optimal condition of coating and blocking were both 4 °C for 12 h. The optimal dilution buffers of bacterial antigen, the antibodies, and the blocking buffer were 0.05 mol/L carbonate buffer, 1% BSA phosphate buffer, and 1.5% BSA carbonate buffer, respectively. The cut-off value was determined to be 0.28, and the analytical sensitivity was 1:800 (dilution of a positive sample). Furthermore, there was no cross-reaction between the coated antigen and goat serum positive for antibodies against other bacteria, indicating that indirect ELISA could detect Klebsiella pneumoniae specifically in most cases. The average coefficients of variation of intra-assay and inter-assay were 4.37 and 5.17% indicating favorable reproducibility of indirect ELISA. In the detection of clinical veterinary samples, the positive rate of indirect ELISA was 6.74%, higher than that of conventional agglutination assays. CONCLUSIONS Taken together, we successfully established an indirect ELISA method for detecting antibodies against Klebsiella pneumoniae in goats, which can be applied in production.
Collapse
|