1
|
Serra ND, Sundaram MV. The Caenorhabditis elegans Dispatched ortholog, CHE-14, is dispensable for apical secretion of the Hedgehog-related proteins GRL-2 and WRT-10. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001329. [PMID: 39391293 PMCID: PMC11465080 DOI: 10.17912/micropub.biology.001329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
C. elegans nematodes possess expanded families of Hedgehog related (Hh-r) and Patched/Dispatched-related (PTR) proteins but their functional relationship remains unclear. Here we investigated whether CHE-14 , the closest C. elegans ortholog for the Hedgehog transporter Dispatched, was necessary for the secretion of two tagged Hh-r proteins: WRT-10 and GRL-2 . We report that CHE-14 is dispensable for the apical localization of GRL-2 and WRT-10 . We also show that animals lacking CHE-14 and another redundant PTR protein DAF-6 also secrete WRT-10 , suggesting neither are required for secretion of these specific Hh-r proteins.
Collapse
Affiliation(s)
- Nicholas D Serra
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Serra ND, Darwin CB, Sundaram MV. Caenorhabditis elegans Hedgehog-related proteins are tissue- and substructure-specific components of the cuticle and precuticle. Genetics 2024; 227:iyae081. [PMID: 38739761 PMCID: PMC11304973 DOI: 10.1093/genetics/iyae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
In Caenorhabditis elegans, expanded families of divergent Hedgehog-related and patched-related proteins promote numerous processes ranging from epithelial and sense organ development to pathogen responses to cuticle shedding during the molt cycle. The molecular functions of these proteins have been mysterious since nematodes lack a canonical Hedgehog signaling pathway. Here we show that Hedgehog-related proteins are components of the cuticle and precuticle apical extracellular matrices that coat, shape, and protect external epithelia. Of four Hedgehog-related proteins imaged, two (GRL-2 and GRL-18) stably associated with the cuticles of specific tubes and two (GRL-7 and WRT-10) labeled precuticle substructures such as furrows or alae. We found that wrt-10 mutations disrupt cuticle alae ridges, consistent with a structural role in matrix organization. We hypothesize that most nematode Hedgehog-related proteins are apical extracellular matrix components, a model that could explain many of the reported functions for this family. These results highlight ancient connections between Hedgehog proteins and the extracellular matrix and suggest that any signaling roles of C. elegans Hedgehog-related proteins will be intimately related to their matrix association.
Collapse
Affiliation(s)
- Nicholas D Serra
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Chelsea B Darwin
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
4
|
Serra ND, Darwin CB, Sundaram MV. C. elegans Hedgehog-related proteins are tissue- and substructure-specific components of the cuticle and pre-cuticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573316. [PMID: 38234847 PMCID: PMC10793445 DOI: 10.1101/2023.12.26.573316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In C. elegans, divergent Hedgehog-related (Hh-r) and Patched-related (PTR) proteins promote numerous processes ranging from epithelial and sense organ development to pathogen responses to cuticle shedding during the molt cycle. Here we show that Hh-r proteins are actual components of the cuticle and pre-cuticle apical extracellular matrices (aECMs) that coat, shape, and protect external epithelia. Different Hh-r proteins stably associate with the aECMs of specific tissues and with specific substructures such as furrows and alae. Hh-r mutations can disrupt matrix structure. These results provide a unifying model for the function of nematode Hh-r proteins and highlight ancient connections between Hh proteins and the extracellular matrix.
Collapse
Affiliation(s)
- Nicholas D. Serra
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Chelsea B. Darwin
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Meera V. Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| |
Collapse
|
5
|
Lu L, Abbott AL. Male gonad-enriched microRNAs function to control sperm production in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561762. [PMID: 37873419 PMCID: PMC10592766 DOI: 10.1101/2023.10.10.561762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Germ cell development and gamete production in animals require small RNA pathways. While studies indicate that microRNAs (miRNAs) are necessary for normal sperm production and function, the specific roles for individual miRNAs are largely unknown. Here, we use small RNA sequencing of dissected gonads and functional analysis of new loss of function alleles to identify functions for miRNAs in the control of fecundity and sperm production in Caenorhabditis elegans males and hermaphrodites. We describe a set of 29 male gonad-enriched miRNAs and identify a set of 3 individual miRNAs (mir-58.1, mir-83, and mir-235) and a miRNA cluster (mir-4807-4810.1) that are required for optimal sperm production at 20°C and 5 additional miRNAs (mir-49, mir-57, mir-261, and mir-357/358) that are required for sperm production at 25°C. We observed defects in meiotic progression in mir-58.1, mir-83, mir-235, and mir-4807-4810.1 mutants that may contribute to the reduced number of sperm. Further, analysis of multiple mutants of these miRNAs suggested complex genetic interactions between these miRNAs for sperm production. This study provides insights on the regulatory roles of miRNAs that promote optimal sperm production and fecundity in males and hermaphrodites.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA
| | - Allison L. Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA
| |
Collapse
|
6
|
Xu S, Tang C. Cholesterol and Hedgehog Signaling: Mutual Regulation and Beyond. Front Cell Dev Biol 2022; 10:774291. [PMID: 35573688 PMCID: PMC9091300 DOI: 10.3389/fcell.2022.774291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (HH) signaling is one of the key agents that govern the precisely regulated developmental processes of multicellular organisms in vertebrates and invertebrates. The HH pathway in the receiving cell includes Patched1, a twelve-pass transmembrane receptor, and Smoothened, a seven-transmembrane G-protein coupled receptor (GPCR), and the downstream GLI family of three transcriptional factors (GLI1-GLI3). Mutations of HH gene and the main components in HH signaling are also associated with numerous types of diseases. Before secretion, the HH protein undergoes post-translational cholesterol modification to gain full activity, and cholesterol is believed to be essential for proper HH signaling transduction. In addition, results from recent studies show the reciprocal effect that HH signaling functions in cholesterol metabolism as well as in cholesterol homeostasis, which provides feedback to HH pathway. Here, we hope to provide new insights into HH signaling function by discussing the role of cholesterol in HH protein maturation, secretion and HH signaling transduction, and the potential role of HH in regulation of cholesterol as well.
Collapse
|
7
|
Bhat K, Medina P, He L, Zhang L, Saki M, Ioannidis A, Nguyen NT, Sodhi SS, Sung D, Magyar CE, Liau LM, Kornblum HI, Pajonk F. 1-[(4-Nitrophenyl)sulfonyl]-4-phenylpiperazine treatment after brain irradiation preserves cognitive function in mice. Neuro Oncol 2021; 22:1484-1494. [PMID: 32291451 DOI: 10.1093/neuonc/noaa095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Normal tissue toxicity is an inevitable consequence of primary or secondary brain tumor radiotherapy. Cranial irradiation commonly leads to neurocognitive deficits that manifest months or years after treatment. Mechanistically, radiation-induced loss of neural stem/progenitor cells, neuroinflammation, and demyelination are contributing factors that lead to progressive cognitive decline. METHODS The effects of 1-[(4-nitrophenyl)sulfonyl]-4-phenylpiperazine (NSPP) on irradiated murine neurospheres, microglia cells, and patient-derived gliomaspheres were assessed by sphere-formation assays, flow cytometry, and interleukin (IL)-6 enzyme-linked immunosorbent assay. Activation of the hedgehog pathway was studied by quantitative reverse transcription PCR. The in vivo effects of NSPP were analyzed using flow cytometry, sphere-formation assays, immunohistochemistry, behavioral testing, and an intracranial mouse model of glioblastoma. RESULTS We report that NSPP mitigates radiation-induced normal tissue toxicity in the brains of mice. NSPP treatment significantly increased the number of neural stem/progenitor cells after brain irradiation in female animals, and inhibited radiation-induced microglia activation and expression of the pro-inflammatory cytokine IL-6. Behavioral testing revealed that treatment with NSPP after radiotherapy was able to successfully mitigate radiation-induced decline in memory function of the brain. In mouse models of glioblastoma, NSPP showed no toxicity and did not interfere with the growth-delaying effects of radiation. CONCLUSIONS We conclude that NSPP has the potential to mitigate cognitive decline in patients undergoing partial or whole brain irradiation without promoting tumor growth and that the use of this compound as a radiation mitigator of radiation late effects on the central nervous system warrants further investigation.
Collapse
Affiliation(s)
- Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Paul Medina
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ling He
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Le Zhang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Mohammad Saki
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Nhan T Nguyen
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Sirajbir S Sodhi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - David Sung
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Clara E Magyar
- Translational Pathology Core Laboratory, Image Analysis/Virtual Microscopy, Department of Pathology and Laboratory Medicine, Los Angeles, California
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Harley I Kornblum
- NPI-Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| |
Collapse
|
8
|
Chiyoda H, Kume M, del Castillo CC, Kontani K, Spang A, Katada T, Fukuyama M. Caenorhabditis elegans PTR/PTCHD PTR-18 promotes the clearance of extracellular hedgehog-related protein via endocytosis. PLoS Genet 2021; 17:e1009457. [PMID: 33872306 PMCID: PMC8104386 DOI: 10.1371/journal.pgen.1009457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 05/07/2021] [Accepted: 03/01/2021] [Indexed: 01/25/2023] Open
Abstract
Spatiotemporal restriction of signaling plays a critical role in animal development and tissue homeostasis. All stem and progenitor cells in newly hatched C. elegans larvae are quiescent and capable of suspending their development until sufficient food is supplied. Here, we show that ptr-18, which encodes the evolutionarily conserved patched-related (PTR)/patched domain-containing (PTCHD) protein, temporally restricts the availability of extracellular hedgehog-related protein to establish the capacity of progenitor cells to maintain quiescence. We found that neural progenitor cells exit from quiescence in ptr-18 mutant larvae even when hatched under starved conditions. This unwanted reactivation depended on the activity of a specific set of hedgehog-related grl genes including grl-7. Unexpectedly, neither PTR-18 nor GRL-7 were expressed in newly hatched wild-type larvae. Instead, at the late embryonic stage, both PTR-18 and GRL-7 proteins were first localized around the apical membrane of hypodermal and neural progenitor cells and subsequently targeted for lysosomal degradation before hatching. Loss of ptr-18 caused a significant delay in GRL-7 clearance, causing this protein to be retained in the extracellular space in newly hatched ptr-18 mutant larvae. Furthermore, the putative transporter activity of PTR-18 was shown to be required for the appropriate function of the protein. These findings not only uncover a previously undescribed role of PTR/PTCHD in the clearance of extracellular hedgehog-related proteins via endocytosis-mediated degradation but also illustrate that failure to temporally restrict intercellular signaling during embryogenesis can subsequently compromise post-embryonic progenitor cell function.
Collapse
Affiliation(s)
- Hirohisa Chiyoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahiko Kume
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kenji Kontani
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Mata-Cabana A, Pérez-Nieto C, Olmedo M. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. ADVANCES IN GENETICS 2020; 107:33-87. [PMID: 33641748 DOI: 10.1016/bs.adgen.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developmental programs are under strict genetic control that favors robustness of the process. In order to guarantee the same outcome in different environmental situations, development is modulated by input pathways, which inform about external conditions. In the nematode Caenorhabditis elegans, the process of postembryonic development involves a series of stereotypic cell divisions, the progression of which is controlled by the nutritional status of the animal. C. elegans can arrest development at different larval stages, leading to cell arrest of the relevant divisions of the stage. This means that studying the nutritional control of development in C. elegans we can learn about the mechanisms controlling cell division in an in vivo model. In this work, we reviewed the current knowledge about the nutrient sensing pathways that control the progression or arrest of development in response to nutrient availability, with a special focus on the arrest at the L1 stage.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - Carmen Pérez-Nieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain.
| |
Collapse
|
10
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
11
|
Guo T, Cheng L, Zhao H, Liu Y, Yang Y, Liu J, Wu Q. The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine. Sci Rep 2020; 10:16933. [PMID: 33037257 PMCID: PMC7547681 DOI: 10.1038/s41598-020-73712-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/04/2020] [Indexed: 11/09/2022] Open
Abstract
The increased application of graphene oxide (GO), a new carbon-based engineered nanomaterial, has generated a potential toxicity in humans and the environment. Previous studies have identified some dysregulated microRNAs (miRNAs), such as up-regulated mir-235, in organisms exposed to GO. However, the detailed mechanisms of the dysregulation of miRNA underlying GO toxicity are still largely elusive. In this study, we employed Caenorhabditis elegans as an in vivo model to investigate the biological function and molecular basis of mir-235 in the regulation of GO toxicity. After low concentration GO exposure, mir-235 (n4504) mutant nematodes were sensitive to GO toxicity, implying that mir-235 mediates a protection mechanism against GO toxicity. Tissue-specific assays suggested that mir-235 expressed in intestine is required for suppressing the GO toxicity in C. elegans. daf-12, a gene encoding a member of the steroid hormone receptor superfamily, acts as a target gene of mir-235 in the nematode intestine in response to GO treatment, and RNAi knockdown of daf-12 suppressed the sensitivity of mir-235(n4503) to GO toxicity. Further genetic analysis showed that DAF-12 acted in the upstream of DAF-16 in insulin/IGF-1 signaling pathway and PMK-1 in p38 MAPK signaling pathway in parallel to regulate GO toxicity. Altogether, our results revealed that mir-235 may activate a protective mechanism against GO toxicity by suppressing the DAF-12-DAF-16 and DAF-12-PMK-1 signaling cascade in nematodes, which provides an important molecular basis for the in vivo toxicity of GO at the miRNA level.
Collapse
Affiliation(s)
- Tiantian Guo
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Lu Cheng
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Huimin Zhao
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Yingying Liu
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Yunhan Yang
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Jie Liu
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Qiuli Wu
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|