1
|
Bastami Z, Sheikhpour R, Razzaghi P, Ramazani A, Gharaghani S. Proteochemometrics modeling for prediction of the interactions between caspase isoforms and their inhibitors. Mol Divers 2023; 27:249-261. [PMID: 35438428 DOI: 10.1007/s11030-022-10425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Caspases (cysteine-aspartic proteases) play critical roles in inflammation and the programming of cell death in the form of necroptosis, apoptosis, and pyroptosis. The name of these enzymes has been chosen in accordance with their cysteine protease activity. They act as cysteines in nucleophilically active sites to attack and cleave target proteins in the aspartic acid and amino acid C-terminal. Based on the substrate's structure and the specificity, the physiological activity of caspases is divided. However, in apoptosis, the division of caspases into initiating caspases (caspase 2, 8, 9, and 10) and executive caspases (caspase 3, 6, and 7) is essential. The present study aimed to perform Proteochemometrics Modeling to generalize the data on caspases, which could predict ligand and protein interactions. In this study, we employed protein and ligand descriptors. Moreover, protein descriptors were computed using the Protr R package, while PADEL-Descriptor was employed for the computation of ligand descriptors. In addition, NCA (Neighborhood Component Analyses) was used for descriptor selection, and SVR, decision tree, and ensemble methods were utilized for the proteochemometrics modeling. This study shows that the ensemble model demonstrates superior performance compared with other models in terms of R2, Q2, and RMSE criteria.
Collapse
Affiliation(s)
- Zahra Bastami
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, Iran.,Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Razieh Sheikhpour
- Department of Computer Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran
| | - Parvin Razzaghi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Zou J, Jones RJ, Wang H, Kuiatse I, Shirazi F, Manasanch EE, Lee HC, Sullivan R, Fung L, Richard N, Erdman P, Torres E, Hecht D, Lam I, McElwee B, Chourasia AH, Chan KWH, Mercurio F, Stirling DI, Orlowski RZ. The novel protein homeostatic modulator BTX306 is active in myeloma and overcomes bortezomib and lenalidomide resistance. J Mol Med (Berl) 2020; 98:1161-1173. [PMID: 32632752 PMCID: PMC10838157 DOI: 10.1007/s00109-020-01943-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
Small molecules targeting the cereblon-containing E3 ubiquitin ligase including thalidomide, lenalidomide, and pomalidomide modulate turnover of downstream client proteins and demonstrate pre-clinical and clinical anti-myeloma activity. Different drugs that engage with cereblon hold the potential of unique phenotypic effects, and we therefore studied the novel protein homeostatic modulator (PHM™) BTX306 with a unique thiophene-fused scaffold bearing a substituted phenylurea and glutarimide. This agent much more potently reduced human-derived myeloma cell line viability, with median inhibitory concentrations in the single nanomolar range versus micromolar values for lenalidomide or pomalidomide, and more potently activated caspases 3/8/9. While lenalidomide and pomalidomide induced greater degradation of Ikaros and Aiolos in myeloma cells, BTX306 more potently reduced levels of GSPT1, eRF1, CK1α, MCL-1, and c-MYC. Suppression of cereblon or overexpression of Aiolos or Ikaros induced relative resistance to BTX306, and this agent did not impact viability of murine hematopoietic cells in an in vivo model, demonstrating its specificity for human cereblon. Interestingly, BTX306 did show some reduced activity in lenalidomide-resistant cell line models but nonetheless retained its nanomolar potency in vitro, overcame bortezomib resistance, and was equipotent against otherwise isogenic cell line models with either wild-type or knockout TP53. Finally, BTX306 demonstrated strong activity against primary CD138-positive plasma cells, showed enhanced anti-proliferative activity in combination with bortezomib and dexamethasone, and was effective in an in vivo systemic model of multiple myeloma. Taken together, the data support further translational studies of BTX306 and its derivatives to the clinic for patients with relapsed and/or refractory myeloma. KEY MESSAGES: BTX306 has a unique thiophene-fused scaffold bearing phenylurea and glutarimide. BTX306 is more potent against myeloma cells than lenalidomide or pomalidomide. BTX306 overcomes myeloma cell resistance to lenalidomide or bortezomib in vitro. BTX306 is active against primary myeloma cells, and shows efficacy in vivo.
Collapse
Affiliation(s)
- Jianxuan Zou
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX, 77030, USA
| | - Richard J Jones
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX, 77030, USA
| | - Hua Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX, 77030, USA
| | - Isere Kuiatse
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX, 77030, USA
| | - Fazal Shirazi
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX, 77030, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX, 77030, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX, 77030, USA
| | | | | | | | | | | | - David Hecht
- School of Mathematics, Science & Engineering, Southwestern College, Chula Vista, CA, USA
| | | | | | | | | | | | | | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX, 77030, USA.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|