1
|
Anandhan S, Herbrich S, Goswami S, Guan B, Chen Y, Macaluso MD, Jindal S, Natarajan SM, Andrewes SW, Xiong L, Nagarajan A, Basu S, Tang DN, Liu J, Min J, Maitra A, Sharma P. TSG-6+ cancer-associated fibroblasts modulate myeloid cell responses and impair anti-tumor response to immune checkpoint therapy in pancreatic cancer. Nat Commun 2024; 15:5291. [PMID: 38987547 PMCID: PMC11237123 DOI: 10.1038/s41467-024-49189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Resistance to immune checkpoint therapy (ICT) presents a growing clinical challenge. The tumor microenvironment (TME) and its components, namely tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), play a pivotal role in ICT resistance; however, the underlying mechanisms remain under investigation. In this study, we identify expression of TNF-Stimulated Factor 6 (TSG-6) in ICT-resistant pancreatic tumors, compared to ICT-sensitive melanoma tumors, both in mouse and human. TSG-6 is expressed by CAFs within the TME, where suppressive macrophages expressing Arg1, Mafb, and Mrc1, along with TSG-6 ligand Cd44, predominate. Furthermore, TSG-6 expressing CAFs co-localize with the CD44 expressing macrophages in the TME. TSG-6 inhibition in combination with ICT improves therapy response and survival in pancreatic tumor-bearing mice by reducing macrophages expressing immunosuppressive phenotypes and increasing CD8 T cells. Overall, our findings propose TSG-6 as a therapeutic target to enhance ICT response in non-responsive tumors.
Collapse
Affiliation(s)
- Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelley Herbrich
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Baoxiang Guan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marc Daniel Macaluso
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Jindal
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seanu Meena Natarajan
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel W Andrewes
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liangwen Xiong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashwat Nagarajan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sreyashi Basu
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Derek Ng Tang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jielin Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Yadav MK, Ishida M, Gogoleva N, Liao CW, Salim FN, Kanai M, Kuno A, Hayashi T, Shahri ZJ, Kulathunga K, Samir O, Lyu W, Olivia O, Mbanefo EC, Takahashi S, Hamada M. MAFB in macrophages regulates cold-induced neuronal density in brown adipose tissue. Cell Rep 2024; 43:113978. [PMID: 38522069 DOI: 10.1016/j.celrep.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Transcription factor MAFB regulates various homeostatic functions of macrophages. This study explores the role of MAFB in brown adipose tissue (BAT) thermogenesis using macrophage-specific Mafb-deficient (Mafbf/f::LysM-Cre) mice. We find that Mafb deficiency in macrophages reduces thermogenesis, energy expenditure, and sympathetic neuron (SN) density in BAT under cold conditions. This phenotype features a proinflammatory environment that is characterized by macrophage/granulocyte accumulation, increases in interleukin-6 (IL-6) production, and IL-6 trans-signaling, which lead to decreases in nerve growth factor (NGF) expression and reduction in SN density in BAT. We confirm MAFB regulation of IL-6 expression using luciferase readout driven by IL-6 promoter in RAW-264.7 macrophage cell lines. Immunohistochemistry shows clustered organization of NGF-producing cells in BAT, which are primarily TRPV1+ vascular smooth muscle cells, as additionally shown using single-cell RNA sequencing and RT-qPCR of the stromal vascular fraction. Treating Mafbf/f::LysM-Cre mice with anti-IL-6 receptor antibody rescues SN density, body temperature, and energy expenditure.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan; National Institutes of Health, Bethesda, MD 20892, USA
| | - Megumi Ishida
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Natalia Gogoleva
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Filiani Natalia Salim
- Centre for Medical Science and Technology and Healthcare Equity, Parahyangan Catholic University, Bandung 40141, Indonesia
| | - Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Zeynab Javanfekr Shahri
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Omar Samir
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Wenxin Lyu
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Olivia Olivia
- Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
3
|
Zhang Z, Jing D, Xuan B, Zhang Z, Wu W, Shao Z. Cellular senescence-driven transcriptional reprogramming of the MAFB/NOTCH3 axis activates the PI3K/AKT pathway and promotes osteosarcoma progression. Genes Dis 2024; 11:952-963. [PMID: 37692492 PMCID: PMC10491868 DOI: 10.1016/j.gendis.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
Osteosarcoma is the most common primary malignancy of bones and primarily occurs in adolescents and young adults. However, a second smaller peak of osteosarcoma incidence was reported in the elderly aged more than 60. Elderly patients with osteosarcoma exhibit different characteristics compared to young patients, which usually results in a poor prognosis. The mechanism underlying osteosarcoma development in elderly patients is intriguing and of significant value in clinical applications. Senescent cells can accelerate tumor progression by metabolic reprogramming. Recent research has shown that methylmalonic acid (MMA) was significantly up-regulated in the serum of older individuals and played a central role in the development of aggressive characteristics. We found that the significant accumulation of MMA in elderly patients imparted proliferative potential to osteosarcoma cells. The expression of MAFB was excessively up-regulated in osteosarcoma specimens and was further enhanced in response to MMA accumulation as the patient aged. Specifically, we first confirmed a novel molecular mechanism between cellular senescence and cancer, in which the MMA-driven transcriptional reprogramming of the MAFB-NOTCH3 axis accelerated osteosarcoma progression via the activation of PI3K-AKT pathways. Moreover, the down-regulation of the MAFB-NOTCH3 axis increased the sensitivity and effect of AKT inhibitors in osteosarcoma through significant inhibition of AKT phosphorylation. In conclusion, we confirmed that MAFB is a novel age-dependent biomarker for osteosarcoma, and targeting the MAFB-NOTCH3 axis in combination with AKT inhibition can serve as a novel therapeutic strategy for elderly patients with osteosarcoma in experimental and clinical trials.
Collapse
Affiliation(s)
- Zhenhao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Doudou Jing
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Baijun Xuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
4
|
Torres GM, Jarnagin HC, Park C, Yang H, Kosarek NN, Bhandari R, Wang CY, Kolling FW, Whitfield ML, Turk MJ, Liby KT, Pioli PA. CDDO-Methyl Ester Inhibits BRAF Inhibitor Resistance and Remodels the Myeloid Compartment in BRAF-mutant Melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551524. [PMID: 37577680 PMCID: PMC10418171 DOI: 10.1101/2023.08.01.551524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Approximately 50% of advanced melanomas harbor activating BRAF V600E mutations that are sensitive to BRAF inhibition. However, the duration of the response to BRAF inhibitors (BRAFi) has been limited due to the development of acquired resistance, which is preceded by recruitment of immunosuppressive myeloid cells and regulatory T cells (T regs ). While the addition of MAPK/ERK kinase 1 inhibitors (MEKi) prolongs therapeutic response to BRAF inhibition, most patients still develop resistance. Using a Braf V600E/+ /Pten -/- graft mouse model of melanoma, we now show that the addition of the methyl ester of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (C-Me) to the BRAFi vemurafenib analog PLX4720 at resistance significantly reduces tumor burden. Dual treatment remodels the BRAFi resistant-tumor microenvironment (TME), reducing infiltration of T regs and tumor associated macrophages (TAMs), and attenuates immunosuppressive cytokine production. For the first time, we characterize myeloid populations using scRNA-seq in BRAFi-resistant tumors and demonstrate that restoration of therapeutic response is associated with significant changes in immune-activated myeloid subset representation. Collectively, these studies suggest that C-Me inhibits acquired resistance to BRAFi. Use of C-Me in combination with other therapies may both inhibit melanoma growth and enhance therapeutic responsiveness more broadly.
Collapse
|
5
|
Liu C, Cheng Q, Ao Q, Yang G, Liu Y, Zhao J. Induced pluripotent stem cells-podocytes promote repair in acute kidney injury is dependent on Mafb/CCR5/Nampt axis-mediated M2 macrophage polarization. Chem Biol Interact 2023; 380:110534. [PMID: 37182688 DOI: 10.1016/j.cbi.2023.110534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have been the focus of cellular therapy studies. The use of iPSCs in regenerative medicine is limited by their tumorigenic potential. This study sought to determine whether iPSCs-derived podocytes attenuate acute kidney injury (AKI) and the molecular mechanism. Inoculation of iPSCs-podocytes significantly promoted the repair of kidney injury in AKI mice, reduced the levels of kidney injury factors Scr, BUN, and urinary NAG, and alleviated the inflammatory response. Histological analysis revealed a significant increase in the number of M2 macrophages and a significant decrease in M1 macrophages in the kidney tissues. Subsequently, the genes and signaling pathways that may be associated with kidney injury repair in mice were analyzed by RNA-seq and bioinformatics prediction. The polarization of M2 macrophages was promoted by MAF bZIP transcription factor B (Mafb)-mediated activation of C-C motif chemokine receptor 5 (Ccr5) and nicotinamide phosphoribosyltransferase (Nampt) signaling pathway. Taken together, these results show that iPSCs-podocytes depend on Mafb to activate the Nampt signaling pathway through transcriptional activation of Ccr5, thereby promoting the repair of AKI caused by ischemia-reperfusion.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Qingli Cheng
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Qiangguo Ao
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Guang Yang
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yang Liu
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Jiahui Zhao
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China.
| |
Collapse
|
6
|
Identification of the Genetic Association Between Type-2-Diabetes and Pancreatic Cancer. Biochem Genet 2022; 61:1143-1162. [DOI: 10.1007/s10528-022-10308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
|
7
|
Zheng K, Wang Y, Wang J, Wang C, Chen J. Integrated analysis of Helicobacter pylori-related prognostic gene modification patterns in the tumour microenvironment of gastric cancer. Front Surg 2022; 9:964203. [PMID: 36248367 PMCID: PMC9561901 DOI: 10.3389/fsurg.2022.964203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Helicobacter pylori (HP) infection is one of the leading causes of gastric cancer (GC). However, the interaction between HP and the TME, and its carcinogenic mechanism remains unknown. Methods The HP-related prognostic genes were identified based on HP infection-related gene markers and HP infection sample datasets by risk method and NMF algorithm. Principal component analysis (PCA) algorithm was used to constructed the HPscore system. The “limma” R package was employed to determine differentially expressed genes. In addition, the R packages, such as “xCell” and “GSVA”, was used to analyze the relationship between the HPscore and tumor microenvironment. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to verify the expression levels of 28 HP-related prognostic genes in tissues. Results We successfully identified 28 HP-related prognostic genes that accurately classified the GC population. There are significant differences in survival between different subgroups (high-, low-risk and cluster_1,2). Thereafter, the HPscore system was constructed to evaluate the signatures of the 28 HP-related prognostic genes. The overall survival rate in the high-HPscore group was poor and immunological surveillance was reduced, whereas the low-HPscore group had a survival advantage and was related to the inflammatory response. HPscore was also strongly correlated with the tumour stage, TME cell infiltration and stemness. The qRT-PCR results showed that DOCK4 expression level of 28 HP-related prognostic genes was higher in gastric cancer tissues than in adjacent tissues. Conclusions HP signatures play a crucial role in the TME and tumourigenesis. HPscore evaluation of a single tumour sample can help identify the TME characteristics and the carcinogenic mechanism of GC patients infected with HP, based on which personalized treatment can be administered.
Collapse
Affiliation(s)
- Kaitian Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiancheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Correspondence: Jun-Qiang Chen
| |
Collapse
|
8
|
Transcription Factor MAFB as a Prognostic Biomarker for the Lung Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23179945. [PMID: 36077342 PMCID: PMC9456510 DOI: 10.3390/ijms23179945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
MAFB is a basic leucine zipper (bZIP) transcription factor specifically expressed in macrophages. We have previously identified MAFB as a candidate marker for tumor-associated macrophages (TAMs) in human and mouse models. Here, we analyzed single-cell sequencing data of patients with lung adenocarcinoma obtained from the GEO database (GSE131907). Analyzed data showed that general macrophage marker CD68 and macrophage scavenger receptor 1 (CD204) were expressed in TAM and lung tissue macrophage clusters, while transcription factor MAFB was expressed specifically in TAM clusters. Clinical records of 120 patients with lung adenocarcinoma stage I (n = 57), II (n = 21), and III (n = 42) were retrieved from Tsukuba Human Tissue Biobank Center (THB) in the University of Tsukuba Hospital, Japan. Tumor tissues from these patients were extracted and stained with anti-human MAFB antibody, and then MAFB-positive cells relative to the tissue area (MAFB+ cells/tissue area) were morphometrically quantified. Our results indicated that higher numbers of MAFB+ cells significantly correlated to increased local lymph node metastasis (nodal involvement), high recurrence rate, poor pathological stage, increased lymphatic permeation, higher vascular invasion, and pleural infiltration. Moreover, increased amounts of MAFB+ cells were related to poor overall survival and disease-free survival, especially in smokers. These data indicate that MAFB may be a suitable prognostic biomarker for smoker lung cancer patients.
Collapse
|
9
|
Photoreceptor Cells Constitutively Express IL-35 and Promote Ocular Immune Privilege. Int J Mol Sci 2022; 23:ijms23158156. [PMID: 35897732 PMCID: PMC9351654 DOI: 10.3390/ijms23158156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Interleukin-27 is constitutively secreted by microglia in the retina or brain, and upregulation of IL-27 during neuroinflammation suppresses encephalomyelitis and autoimmune uveitis. However, while IL-35 is structurally and functionally similar to IL-27, the intrinsic roles of IL-35 in CNS tissues are unknown. Thus, we generated IL-35/YFP-knock-in reporter mice (p35-KI) and demonstrated that photoreceptor neurons constitutively secrete IL-35, which might protect the retina from persistent low-grade inflammation that can impair photoreceptor functions. Furthermore, the p35-KI mouse, which is hemizygous at the il12a locus, develops more severe uveitis because of reduced IL-35 expression. Interestingly, onset and exacerbation of uveitis in p35-KI mice caused by extravasation of proinflammatory Th1/Th17 lymphocytes into the retina were preceded by a dramatic decrease of IL-35, attributable to massive death of photoreceptor cells. Thus, while inflammation-induced death of photoreceptors and loss of protective effects of IL-35 exacerbated uveitis, our data also suggest that constitutive production of IL-35 in the retina might have housekeeping functions that promote sterilization immunity in the neuroretina and maintain ocular immune privilege.
Collapse
|
10
|
Zhang S, Gong T, Nan Y, Feng R, Liu Z, Chen H. MAFB promotes the malignant phenotypes by IGFBP6 in esophageal squamous cell carcinomas. Exp Cell Res 2022; 416:113158. [PMID: 35430273 DOI: 10.1016/j.yexcr.2022.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant diseases in the world. Although the somatic alterations have been fully identified, there are still no targeted drugs at present. Our previous studies revealed that loss of grand H3K27me3 domains mediated transcriptional activation of a series of genes in ESCC. Among them, we focus on the investigation of MAFB, as its high expression is associated with a poor prognosis in ESCC. Functional assays show that knockdown of MAFB significantly suppresses cell growth, migration and invasion. Mechanistic investigation demonstrates that MAFB exerts its function by upregulating IGFBP6. Our findings suggest that MAFB may play a tumor-promoting role and may act as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Shaobo Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yabin Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int J Mol Sci 2021; 22:ijms22052662. [PMID: 33800829 PMCID: PMC7961970 DOI: 10.3390/ijms22052662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.
Collapse
|
12
|
Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol 2020; 10:566511. [PMID: 33194645 PMCID: PMC7642726 DOI: 10.3389/fonc.2020.566511] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes. TAMs' variability strongly depends on cancer type, stage, and intratumor heterogeneity. Majority of TAMs are programmed by tumor microenvironment to support primary tumor growth and metastatic spread. However, TAMs can also restrict tumor growth and metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor growth, metastasis and in the response to cancer therapy in patients with five aggressive types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently metastasize into distant organs resulting in high mortality of the patients. Two major TAM parameters are applied for the evaluation of TAM correlation with the cancer progression: total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers. We summarized the data generated in the wide range of international patient cohorts on the correlation of TAMs with clinical and pathological parameters of tumor progression including lymphatic and hematogenous metastasis, recurrence, survival, therapy efficiency. We described currently available biomarkers for TAMs that can be measured in patients' samples (tumor tissue and blood). CD68 is the major biomarker for the quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163, CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used as biomarkers for the functional TAM polarization. We also considered that specific role of TAMs in tumor progression can depend on the localization in the intratumoral compartments. We have made the conclusion for the role of TAMs in primary tumor growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in colorectal cancer have protective role for the patient and interfere with primary tumor growth and metastasis. The accumulated data are essential for using TAMs as biomarkers and therapeutic targets to develop cancer-specific immunotherapy and to design efficient combinations of traditional therapy and new immunomodulatory approaches.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gulnara Tuguzbaeva
- Department of Pathophysiology, Bashkir State Medical University, Ufa, Russia
| | - Anastasia Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Stakheyeva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Evgeniy Choinzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
13
|
|
14
|
Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel) 2020; 12:cancers12061411. [PMID: 32486098 PMCID: PMC7352439 DOI: 10.3390/cancers12061411] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages are key innate immune cells in the tumor microenvironment (TME) that regulate primary tumor growth, vascularization, metastatic spread and tumor response to various types of therapies. The present review highlights the mechanisms of macrophage programming in tumor microenvironments that act on the transcriptional, epigenetic and metabolic levels. We summarize the latest knowledge on the types of transcriptional factors and epigenetic enzymes that control the direction of macrophage functional polarization and their pro- and anti-tumor activities. We also focus on the major types of metabolic programs of macrophages (glycolysis and fatty acid oxidation), and their interaction with cancer cells and complex TME. We have discussed how the regulation of macrophage polarization on the transcriptional, epigenetic and metabolic levels can be used for the efficient therapeutic manipulation of macrophage functions in cancer.
Collapse
|