1
|
Zhang X, Gao X, Xu J, Zhang Z, Lin T, Zhang X, Kang X. The role of lncRNA and miRNA on the effects of occurrence and development of osteosarcoma. Int Immunopharmacol 2025; 144:113726. [PMID: 39615111 DOI: 10.1016/j.intimp.2024.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Osteosarcoma is a common primary malignant bone tumor with a high incidence in children and adolescents, with high invasiveness and lung metastases. Even after traditional surgical excision, chemoradiotherapy, and comprehensive treatment, the survival rate of patients is still low, and the prognosis is not ideal. As an important part of non-coding RNA family, lncRNA and miRNA have significant regulatory effects on the growth, proliferation, metastasis and apoptosis of osteosarcoma cells. Therefore, exploring the roles of lncRNAs and miRNAs in the occurrence and development of osteosarcoma is of great help for the subsequent diagnosis, treatment, and prognosis of osteosarcoma. This paper mainly reviews the current research progress on the effects and mechanisms of lncRNAs and miRNAs on osteosarcoma cells, in order to provide new ideas for future research on the development process, treatment methods, and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Zhuoya Zhang
- The First Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Tingtong Lin
- The Second Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xueyan Zhang
- Institute of Biochemistry and Molecular Biology and School of Basic Medical Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China.
| |
Collapse
|
2
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
3
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
4
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Yu H, Zhang B, Qi L, Han J, Guan M, Li J, Meng Q. AP003352.1/miR-141-3p axis enhances the proliferation of osteosarcoma by LPAR3. PeerJ 2023; 11:e15937. [PMID: 37727685 PMCID: PMC10506581 DOI: 10.7717/peerj.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor with a poor prognosis and a growing incidence. LncRNAs and microRNAs control the occurrence and development process of osteosarcoma through ceRNA patterns. The LPAR3 gene is important in cancer cell proliferation, apoptosis and disease development. However, the regulatory mechanism of the ceRNA network through which LPAR3 participates in osteosarcoma has not been clarified. Herein, our study demonstrated that the AP003352.1/miR-141-3p axis drives LPAR3 expression to induce the malignant progression of osteosarcoma. First, the expression of LPAR3 is regulated by the changes in AP003352.1 and miR-141-3p. Similar to the ceRNA of miR-141-3p, AP003352.1 regulates the expression of LPAR3 through this mechanism. In addition, the regulation of AP003352.1 in malignant osteosarcoma progression depends to a certain degree on miR-141-3p. Importantly, the AP003352.1/miR-141-3p/LPAR3 axis can better serve as a multi-gene diagnostic marker for osteosarcoma. In conclusion, our research reveals a new ceRNA regulatory network, which provides a novel potential target for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hongde Yu
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Lin Qi
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jiaze Li
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Qingtao Meng
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| |
Collapse
|
6
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Xu X, Li H, Xie M, Zhou Z, Wang D, Mao W. LncRNAs and related molecular basis in malignant pleural mesothelioma: challenges and potential. Crit Rev Oncol Hematol 2023; 186:104012. [PMID: 37116816 DOI: 10.1016/j.critrevonc.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but invasive cancer, which mainly arises from mesothelial tissues of pleura, peritoneum and pericardium. Despite significant advances in treatments, the prognosis of MPM patients remains poor, and the 5-year survival rate is less than 10%. Therefore, it is urgent to explore novel therapeutic targets for the treatment of MPM. Growing evidence has indicated that long non-coding RNAs (lncRNAs) potentially could be promising therapeutic targets for numerous cancers. In this regard, lncRNAs might also potentially therapeutic targets for MPM. Recent advances have been made to investigate the molecular basis of MPM. This review first provides a comprehensive overview of roles of lncRNAs in MPM and then discusses the relationship between molecular basis of MPM and MPM-related lncRNAs to implement them as promising therapeutic targets for MPM.
Collapse
Affiliation(s)
- Xiaoling Xu
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huihui Li
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mingying Xie
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zichao Zhou
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ding Wang
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weimin Mao
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Thoracic Surgery, Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Chen C, Liu L. Silencing of lncRNA KLF3-AS1 represses cell growth in osteosarcoma via miR-338-3p/MEF2C axis. J Clin Lab Anal 2022; 36:e24698. [PMID: 36250223 DOI: 10.1002/jcla.24698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly recurrent malignancy occurring among adolescents. The goal of this research was to scrutinize the role and action mechanism of KLF3-AS1 in OS. METHODS Western blotting and quantitative reverse transcription real-time PCR were conducted to ascertain the mRNA expressions of miR-338-3p, KLF3-AS1, and MEF2C in OS cell lines and tissue samples. Colony formation and CCK-8 experiments were done to evaluate the proliferative capacity of the cells. Western blotting was also executed to measure the relative expressions of the proteins Bcl-2 and Bax. RNA immunoprecipitation and dual luciferase reporter experiments were carried out to validate the target relationships among MEF2C, KLF3-AS1, and miR-338-3p. Mouse xenograft models were created to assess the influences of KLF3-AS1 on the growth of tumors in vivo. RESULTS Elevated levels of KLF3-AS1 and MEF2C and reduced amounts of miR-338-3p were identified in OS. KLF3-AS1 targeted miR-338-3p, and miR-338-3p further targeted MEF2C. Silencing KLF3-AS1 induced apoptosis and attenuated proliferation in vitro and repressed the tumor growth in vivo. Inhibiting miR-338-3p inverted the cancer-suppressing effects of KLF3-AS1 silencing. Meanwhile, loss of MEF2C partially eliminated the effects brought about by miR-338-3p downregulation, namely the stimulation of cell growth and suppression of apoptosis. CONCLUSIONS Silencing of KLF3-AS1 could repress the growth of cells and induce apoptosis by regulating miR-338-3p/MEF2C in OS. This suggests that the regulatory axis KLF3-AS1/miR-338-3p/MEF2C is a prospective target for OS treatment.
Collapse
Affiliation(s)
- Chunfa Chen
- Department of Emergency Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Liang Liu
- Department of Spinal Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| |
Collapse
|
9
|
Shi Y, Yang B, Zhao Y. Silencing long non-coding RNA LINC00960 inhibits osteosarcoma proliferation by sponging miR-107 to downregulate SALL4. Biochem Biophys Res Commun 2022; 592:99-105. [PMID: 35033873 DOI: 10.1016/j.bbrc.2022.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
long non-coding RNAs (lncRNAs), as tumor suppressors or oncogenes, have been identified to play key roles in tumorigenesis. The present study explored the roles and potential mechanisms of LINC00960 in osteosarcoma (OS). In vitro study showed that silencing LINC00960 inhibited proliferation, migration and invasion of 143B and MG63. In vivo study demonstrated that knockdown of LINC00960 repressed tumor growth. Further investigation revealed that LINC00960 could regulate SALL4 by sponging miR-107 to promote the progression of OS. Together, LINC00960 is a tumor oncogene in the development and prognosis of OS, which may be a new therapeutic target for OS.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
10
|
PCAT6 May Be a Whistler and Checkpoint Target for Precision Therapy in Human Cancers. Cancers (Basel) 2021; 13:cancers13236101. [PMID: 34885209 PMCID: PMC8656686 DOI: 10.3390/cancers13236101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Prostate cancer-associated transcript 6 (PCAT6), as a newly discovered carcinogenic long non-coding RNA (lncRNA), is abnormally expressed in multiple diseases. With the accumulation of studies on PCAT6, we have a deeper understanding of its biological functions and mechanisms. Therefore, in this review, the various molecular mechanisms by which PCAT6 promotes multiple tumorigenesis and progression are summarized and discussed. Furthermore, its potential diagnostic, prognostic, and immunotherapeutic values are also clarified. Abstract LncRNAs are involved in the occurrence and progressions of multiple cancers. Emerging evidence has shown that PCAT6, a newly discovered carcinogenic lncRNA, is abnormally elevated in various human malignant tumors. Until now, PCAT6 has been found to sponge various miRNAs to activate the signaling pathways, which further affects tumor cell proliferation, migration, invasion, cycle, apoptosis, radioresistance, and chemoresistance. Moreover, PCAT6 has been shown to exert biological functions beyond ceRNAs. In this review, we summarize the biological characteristics of PCAT6 in a variety of human malignancies and describe the biological mechanisms by which PCAT6 can facilitate tumor progression. Finally, we discuss its diagnostic and prognostic values and clinical applications in various human malignancies.
Collapse
|
11
|
Wang S, Chen Z, Gu J, Chen X, Wang Z. The Role of lncRNA PCAT6 in Cancers. Front Oncol 2021; 11:701495. [PMID: 34327141 PMCID: PMC8315724 DOI: 10.3389/fonc.2021.701495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) PCAT6 is a member of the Prostate Cancer Associated Transcripts family of molecules. In this review, we focus on the latest studies involving PCAT6 in the diagnosis, treatment, and prognosis of malignant tumors of the digestive, respiratory, urinary, reproductive, motion, and nervous systems. PCAT6 was found to be highly expressed in gastric cancer, colon cancer, hepatocellular carcinoma, lung cancer, bladder cancer, ovarian cancer, breast cancer, cervical cancer, osteosarcoma, glioblastoma, and other tumors. PCAT6 can promote the development and progression of different types of malignant tumors through various mechanisms. Overall, these findings suggest that PCAT6 may play an increasingly vital role in the clinical assessment of these malignant tumors. It can function as an oncogene and may be used as a potential new prognostic biomarker of these tumors.
Collapse
Affiliation(s)
- Siying Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenyao Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Shi SB, Cheng QH, Gong SY, Lu TT, Guo SF, Song SM, Yang YP, Cui Q, Yang KH, Qian YW. PCAT6 may be a new prognostic biomarker in various cancers: a meta-analysis and bioinformatics analysis. Cancer Cell Int 2021; 21:370. [PMID: 34247605 PMCID: PMC8273986 DOI: 10.1186/s12935-021-02079-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023] Open
Abstract
Background LncRNA prostate cancer-associated transcript 6 (PCAT6) has been reported to be dysregulated in several cancers and is associated with tumor progression. Here, we have performed a meta-analysis to assess the general prognostic role of PCAT6 in malignancies. Methods Four public databases (Embase, Pubmed, Web of Science, Cochrane Library) were used to identify eligible studies, then data was extracted and associations between prognostic indicators and clinical characteristics were combined to estimate hazard ratio (HR) or odds ratio (OR) with a 95% confidence interval (CI). Publication bias was measured using the Begg's test, and the stability of the combined results was measured using sensitivity analysis. Subsequently, results were validated using Gene Expression Profiling Interactive Analysis (GEPIA) and the National Genomics Data Center (NGDC). Results Ten studies were considered eligible for inclusion. In total, 937 patients and eight types of cancer were included. Our results revealed that overexpression of PCAT6 was significantly associated with a shorter OS (HR = 1.82; 95% CI, [1.40, 2.38]; P < 0.0001) and progression-free survival (PFS) (HR = 1.66; 95% CI, [1.22, 2.25]; P < 0.0001) in cancer patients, and that PCAT6 overexpression was significantly associated with individual tumor clinicopathological parameters, including TNM stage (OR = 0.29; 95% CI, [0.09, 0.94]; P = 0.04), gender (OR = 1.84; 95% CI, [1.31, 2.59]; P = 0.0005), and whether the tumor was metastatic (OR = 5.02; 95% CI, [1.36, 18.57]; P = 0.02). However, PCAT6 overexpression was not correlated with patient age and tumor differentiation. PCAT6 expression was significantly up-regulated in four types of cancer, which was validated using the GEPIA cohort. Combining OS and disease-free survival (DFS) of these four types of cancer revealed a shorter OS and DFS in patients with PCAT6 overexpression. PCAT6 expression in various types of cancer was also validated in NGDC. A total of eight cancers were analyzed and PCAT6 was highly expressed in all eight cancers. Further functional predictions suggest that PCAT6 is correlated with tumor prognosis, and that PCAT6 may be useful as a new tumor-specific marker. Conclusions LncRNA PCAT6 is highly expressed in multiple cancer types and its upregulation was significantly associated with patient prognosis and poorer clinical features, thereby suggesting that PCAT6 may be a novel prognostic factor in multiple cancer types.
Collapse
Affiliation(s)
- Song-Bo Shi
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China
| | - Qing-Hao Cheng
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shi-Yi Gong
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China.,Institution of Clinical Research and Evidence-Based Medicine, The Gansu Provincial Hospital, Lanzhou, China
| | - Ting-Ting Lu
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China.,Institution of Clinical Research and Evidence-Based Medicine, The Gansu Provincial Hospital, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, No. 222, Tian shui South Road, Cheng guan District, Lanzhou, 730000, China
| | - Shi-Fang Guo
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China
| | - Shao-Ming Song
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China.,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yu-Ping Yang
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China
| | - Qi Cui
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ke-Hu Yang
- Institution of Clinical Research and Evidence-Based Medicine, The Gansu Provincial Hospital, Lanzhou, China. .,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, No. 222, Tian shui South Road, Cheng guan District, Lanzhou, 730000, China. .,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.
| | - Yao-Wen Qian
- Gansu Provincial Hospital, 204 Dong gang West Road, Cheng guan District, Lanzhou, China.
| |
Collapse
|
13
|
Liu B, Jiang HY, Yuan T, Luo J, Zhou WD, Jiang QQ, Wu D. Enzalutamide-Induced Upregulation of PCAT6 Promotes Prostate Cancer Neuroendocrine Differentiation by Regulating miR-326/HNRNPA2B1 Axis. Front Oncol 2021; 11:650054. [PMID: 34277403 PMCID: PMC8278330 DOI: 10.3389/fonc.2021.650054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Our previous studies have demonstrated that Enzalutamide-induced upregulation of long non-coding RNA p21 (lncRNA-p21) facilitates prostate cancer (PCa) neuroendocrine differentiation (NED). Given the important role of lncRNAs in PCa pathogenesis, and given that lots of lncRNAs are dys-regulated in neuroendocrine PCa (NEPC) patients, we next explored the biological function and underlying mechanism of lncRNA-PCAT6 (PCAT6) in mediating Enzalutamide-induced NED. The level of PCAT6 in Enzalutamide-treated PCa cells and NEPC samples were assessed using quantitative RT-PCR (qPCR). The effect of PCAT6 on PCa cell proliferation, invasion, and NED was evaluated through CCK-8, transwell, qPCR, western blot analysis, Xenograft mouse model, and in vivo lung metastasis model. We found that PCAT6 was highly expressed in NE-like cells (PC3, DU145, and NCI-H660) compared with androgen-sensitive LNCaP cells. PCAT6 was also highly expressed in NEPC tissues. Enzalutamide treatment resulted in a significant increase of PCAT6 level in a dose- and time-dependent fashion. Functionally, PCAT6 overexpression promoted NED of C4-2 cells, as evidenced by an increased expression of NE markers (NSE, ChgA, and SYP), whereas PCAT6 knockdown in NCI-H661 cells repressed NED. Furthermore, PCAT6 overexpression promoted PCa cell proliferation and invasion in vitro and in vivo. Mechanistically, PCAT6 functioned as competing endogenous (ce) RNA via absorbing miR-326, thus resulting in a de-suppression of Hnrnpa2b1 target gene. The current results demonstrate that PCAT6 acted as a tumor activator in PCa progression by sponging miR-326 and increasing Hnrnpa2b1 expression and that the PCAT6/miR-326/Hnrnpa2b1 signaling might be a new therapeutic target for PCa.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Hui-Yang Jiang
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Tao Yuan
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Jie Luo
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Wei-Dong Zhou
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Qi-Quan Jiang
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| |
Collapse
|
14
|
Riquier S, Mathieu M, Bessiere C, Boureux A, Ruffle F, Lemaitre JM, Djouad F, Gilbert N, Commes T. Long non-coding RNA exploration for mesenchymal stem cell characterisation. BMC Genomics 2021; 22:412. [PMID: 34088266 PMCID: PMC8178833 DOI: 10.1186/s12864-020-07289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.
Collapse
Affiliation(s)
- Sébastien Riquier
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Marc Mathieu
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Chloé Bessiere
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Anthony Boureux
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Florence Ruffle
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Nicolas Gilbert
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Thérèse Commes
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| |
Collapse
|
15
|
Luo J, Zheng J, Hao W, Zeng H, Zhang Z, Shao G. lncRNA PCAT6 facilitates cell proliferation and invasion via regulating the miR-326/hnRNPA2B1 axis in liver cancer. Oncol Lett 2021; 21:471. [PMID: 33907581 PMCID: PMC8063269 DOI: 10.3892/ol.2021.12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is one of the most common malignant human tumors with the highest morbidity and mortality rates of all cancer types in China. Evidence suggests that long non-coding RNA prostate cancer-associated transcript 6 (PCAT6) plays an essential role in tumor progression. However, the roles and mechanism of PCAT6 in liver cancer remain unclear. The present study showed that the expression of PCAT6 and heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was upregulated in liver cancer tissues compared with non-cancerous tissues and were associated with poor overall survival time, whereas microRNA (miR)-326 expression was downregulated. Moreover, knockdown of PCAT6 significantly inhibited the proliferation and invasion of liver cancer cells in vitro and in vivo. A dual-luciferase reporter gene assay demonstrated that PCAT6 could bind to miR-326 and that hnRNPA2B1 was a direct target gene of miR-326. Mechanistically, silenced PCAT6 suppressed the malignant phenotype of liver cancer cells through upregulating the inhibitory effect of miR-326 on hnRNPA2B1 expression. Taken together, these data demonstrated that knockdown of PCAT6 inhibited liver cancer progression through regulation of the miR-326/hnRNPA2B1 axis, suggesting that PCAT6 functions as an oncogene and may be a useful biomarker for the future diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Jun Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310022, P.R. China
| | - Jiaping Zheng
- Department of Intervention, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Weiyuan Hao
- Department of Intervention, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Hui Zeng
- Department of Intervention, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhewei Zhang
- Department of Intervention, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Guoliang Shao
- Department of Intervention, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
16
|
Pan Z, Mo F, Liu H, Zeng J, Huang K, Huang S, Cao Z, Xu X, Xu J, Liu T, Huang J. LncRNA prostate androgen-regulated transcript 1 (PART 1) functions as an oncogene in osteosarcoma via sponging miR-20b-5p to upregulate BAMBI. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:488. [PMID: 33850885 PMCID: PMC8039658 DOI: 10.21037/atm-21-658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Osteosarcoma (OS) is an aggressive bone cancer that most commonly affects adolescents and children. Emerging studies have shown that long noncoding RNA (lncRNA) performs essential roles in the occurrence and development of many tumors. Prostate androgen-regulated transcript 1 (PART 1) has been reported as a tumor oncogene; despite this, the mechanisms underlying its involvement in OS are unclear. Methods OS and paired normal tissue samples were obtained, and gene expressions were detected by real time-quantitative polymerase chain reaction (RT-qPCR). The functions of PART 1 in OS cell proliferation, invasion, and migration were determined by Cell Counting Kit-8 (CCK-8) and Transwell assays. Furthermore, the binding sites of PART 1 and miR-20b-5p as well as those between miR-20b-5p and bone morphogenic protein and activin membrane-bound inhibitor homolog (BAMBI) were verified by bioinformatics analysis and dual-luciferase reporter assay. Results Our study found obvious overexpression of PART 1 in OS tissues and cells. Furthermore, PART 1 overexpression facilitated OS cell proliferation, invasion, and migration. Further mechanistic investigations revealed that PART 1 could sponge to miR-20b-5p, which was expressed at a low level in OS tissues and cells. Importantly, miR-20b-5p overexpression inhibited OS cell proliferation, invasion, and migration. Additionally, BAMBI was confirmed as a downstream gene of miR-20b-5p, and its expression was reversely modulated by miR-20b-5p and positively modulated by PART 1. Rescue experiments suggested that BAMBI was involved in PART 1-mediated promotion of OS progression. Conclusions PART 1 serves as a competing endogenous RNA to promote OS tumorigenesis via its regulation of the miR-20b-5p/BAMBI axis, which may provide a promising therapeutic biomarkers for OS patients.
Collapse
Affiliation(s)
- Zhimin Pan
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fengbo Mo
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hucheng Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital of Jing'an District, Shanghai, China
| | - Sheng Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyou Cao
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyu Xu
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyun Xu
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianmi Liu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Li M, Yu X, Zheng Q, Zhang Q, He Y, Guo W. Promising role of long non-coding RNA PCAT6 in malignancies. Biomed Pharmacother 2021; 137:111402. [PMID: 33761616 DOI: 10.1016/j.biopha.2021.111402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a newly identified class of non-coding RNA (ncRNA), are defined as RNA molecules at least 200 nucleotides in length that are not translated into proteins. LncRNAs contribute to a wide range of biological processes and are master regulators of disease occurrence, development, and response to therapy in human malignancies. The lncRNA prostate cancer‑associated transcript 6 (PCAT6) is upregulated in various human malignancies, including lung cancer, hepatocellular carcinoma, cervical cancer, osteosarcoma, glioblastoma, colorectal cancer, breast cancer, gastric cancer, gastrointestinal stromal tumors, and pancreatic ductal adenocarcinoma. High expression of PCAT6 is closely correlated with aggressive clinicopathological characteristics and poor prognosis in cancer patients, suggesting it is an oncogenic lncRNA. PCAT6 overexpression also facilitates cell proliferation, invasion, and migration while attenuating apoptosis, indicating that it might serve as a new prognostic biomarker and therapeutic target for malignancies. Here, we discuss the molecular mechanisms, regulatory functions, and potential clinical applications of PCAT6 in cancer.
Collapse
Affiliation(s)
- Mingxing Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
18
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M. The critical roles of lncRNAs in the development of osteosarcoma. Biomed Pharmacother 2021; 135:111217. [PMID: 33433358 DOI: 10.1016/j.biopha.2021.111217] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is rare malignancy of childhood and adolescence, with high morbidity and mortality despite accomplishment of diverse therapeutic modalities. Identification of the underlying mechanism of osteosarcoma evolution would help in better management of this rare malignancy. Lots of investigations have described abnormal regulation of long non-coding RNAs (lncRNAs) in clinical specimens of osteosarcoma and the established cell lines. This malignancy has been associated with over-expression of TUG1, LOXL1-AS1, MIR100HG, NEAT1, HULC, ANRIL and a number of other lncRNAs, while under-expression of lots of lncRNAs including LncRNA-p21, FER1L4, GAS5, LncRNA NR_136400 and LINC-PINT. Expression amounts of LUCAT1, LINC00922, SNHG12, FOXC2-AS1 and OIP5-AS1 lncRNAs have been associated with response to a number of chemotherapeutic agents. Taken together, lncRNAs are possible targets for proposing novel advanced therapeutic modalities for osteosarcoma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Zhao P, Cheng J, Li B, Nie D, Wang H, Li C, Gui S, Zhang Y. LncRNA PCAT6 regulates the progression of pituitary adenomas by regulating the miR-139-3p/BRD4 axis. Cancer Cell Int 2021; 21:14. [PMID: 33407504 PMCID: PMC7789787 DOI: 10.1186/s12935-020-01698-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dysregulated lncRNA PCAT6 was discovered in many cancers excluding pituitary adenomas (PA). Therefore, we explored the role of PCAT6 in PA in this research. METHODS Abnormally expressed miRNAs were analyzed by bioinformatics and RT-qPCR. The target and regulator of miR-139-3p were determined by bioinformatics, dual-luciferase reporter assay, or RIP. The correlation among PCAT6, miR-139-3p, and BRD4 was further analyzed. The viability, apoptosis, cell cycle distribution of PA cells, as well as their ability to invade, migrate, and proliferate, were tested after transfection through CCK-8, flow cytometry, transwell, wound healing, and colony formation assays. After construction of transplanted-tumor model in nude mice, cell apoptosis in the tumor was detected by TUNEL. The expressions of PCAT6, BRD4, miR-139-3p, and apoptosis-related factors in PA tissues, cells, or tumor tissues were detected by RT-qPCR, Western blot, or IHC. RESULTS PCAT6 and BRD4 were high-expressed but miR-139-3p was low-expressed in PA. Both the 3'-untranslated regions of PCAT6 and BRD4 mRNAs were demonstrated to contain a potential binding site for miR-139-3p. PCAT6 was positively correlated to BRD4, and miR-139-3p was negatively correlated to PCAT6 and BRD4. MiR-139-3p mimic, shPCAT6 and siBRD4 inhibited the viability, migration, invasion, and proliferation of PA cells while inducing apoptosis. MiR-139-3p mimic and shPCAT6 inhibited the cell cycle progression of PA cells, decreased the weight and volume of the xenotransplanted tumor, and reduced the levels of Bcl-2 and BRD4 while enhancing the levels of Bax, miR-139-3p, and Cleaved caspase-3. MiR-139-3p inhibitor caused the opposite effect of miR-139-3p mimic and further reversed the effect of shPCAT6 on on PA cells. CONCLUSION PCAT6 regulated the progression of PA via modulating the miR-139-3p/BRD4 axis, which might provide a novel biomarker for the prevention, diagnosis, and treatment of PA.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.
| | - Jianhua Cheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Bin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Hongyun Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Yazhuo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| |
Collapse
|
20
|
Wan D, Qu Y, Zhang L, Ai S, Cheng L. The lncRNA LINC00691Functions as a ceRNA for miRNA-1256 to Suppress Osteosarcoma by Regulating the Expression of ST5. Onco Targets Ther 2020; 13:13171-13181. [PMID: 33380807 PMCID: PMC7769148 DOI: 10.2147/ott.s266435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Osteosarcoma is the most common primary malignant tumor in children and young patients. Although neoadjuvant chemotherapy and surgery could improve the prognosis of these patients, treatment outcomes are poor because of its low early diagnosis rate and high degree of malignancy as well as its tendency for early metastasis. In the field of osteosarcoma, lncRNAs have become a hot spot for studying the molecular mechanisms driving malignant biological characteristics and exploring effective treatment methods. An lncRNA is a long noncoding RNA lacking protein-encoding ability, and in its RNA form, it regulates various gene expression processes, such as epigenetic regulation, transcriptional regulation, and posttranscriptional regulation. LncRNAs play an important role in tumorigenesis and metastasis. Methods We used bioinformatics software to analyze the data in geo database. CCK-8 and Transwell were used to detect the effect of lncRNA LINC00691 on the proliferation and migration of osteosarcoma cells. The target gene of LINC00691 was detected by bioinformatics analysis and RNA pull down. Results In this study, we identified the lncRNA LINC00691 and confirmed its expression in osteosarcoma cells through GEO database analysis. Expression analysis showed that the levels of lncRNA LINC00691 in osteosarcoma cells were decreased compared to those of control cells. Overexpression of LINC00691 could inhibit the proliferation, migration, invasion, and induction of G1 cell cycle arrest in osteosarcoma cells, which was shown through in vitro and in vivo studies. Using bioinformatics analysis, RNA pull down experiments and luciferase reporter gene detection assays, we found that LINC00691 regulated ST5 expression by binding miR-1256. LINC00691 overexpression inhibited EMT by promoting the expression of E-cadherin and increasing the expression of ZEB1, Snail, and Fibronectin. Conclusion These results suggested that overexpressed LINC00691 promoted the expression of ST5 by regulating the function of miR-1256 through a ceRNA mechanism. The LINC00691/miR-1256/ST5 pathway plays an important role in the progression and metastasis of osteosarcoma and represents a good therapeutic target.
Collapse
Affiliation(s)
- Daqian Wan
- Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, People's Republic of China
| | - Yang Qu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University, Shandong, People's Republic of China.,Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, People's Republic of China
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Liming Cheng
- Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Guan X, Xu Y, Zheng J. Long non‑coding RNA PCAT6 promotes the development of osteosarcoma by increasing MDM2 expression. Oncol Rep 2020; 44:2465-2474. [PMID: 33125146 PMCID: PMC7610325 DOI: 10.3892/or.2020.7813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a severe malignant tumor. Several studies indicated that lncRNA prostate cancer-associated transcript 6 (PCAT6) promoted the development of multiple types of cancers. Studies have also revealed that MDM2 could aggravate tumor symptoms inhibiting P53 expression. However, whether lncRNA PCAT6 could affect the proliferation and metastasis of osteosarcoma cells by regulating P53 expression is unclear. The present study established lncRNA PCAT6-overexpressing osteosarcoma cells. Cell Counting Kit-8, wound healing and Transwell assays were performed to detect the change in proliferation, migration and invasion of these cells, respectively. Subsequently, E3 ubiquitin-protein ligase Mdm2 (MDM2), P53 and P21 expression were determined using western blotting. Finally, MDM2 expression was inhibited and the proliferation, migration and invasion of these cells was determined again. The present study found that the proliferation, migration and invasion of osteosarcoma cells increased following overexpression of lncRNA PCAT6. MDM2 expression was upregulated while the levels of P53 and P21 decreased following overexpression of lncRNA PCAT6. However, the proliferation, migration and invasion of osteosarcoma cells were inhibited following MDM2 knockdown. Additionally, P53 and P21 was rescued following MDM2 knockdown. To conclude, lncRNA PCAT6 promoted the proliferation, migration and invasion of osteosarcoma cells by promoting the expression of MDM2 and suppressing the expression of P53 and P21.
Collapse
Affiliation(s)
- Xiliang Guan
- Department of Orthopaedic Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Jufen Zheng
- The Department of Bone, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| |
Collapse
|
22
|
Chen J, Miao W, Yang S, Yin M, Zhao J, Song D. LncRNA NR_027471 Functions as a ceRNA for miRNA-8055 Leading to Suppression of Osteosarcoma by Regulating the Expression of TP53INP1. Front Oncol 2020; 10:563255. [PMID: 33117693 PMCID: PMC7550745 DOI: 10.3389/fonc.2020.563255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a malignancy with high aggressiveness and poor prognosis, which occurs mainly in children. The therapeutic strategy against osteosarcoma includes surgery combined with chemotherapy and radiotherapy. Although the treatment of osteosarcoma has been improved in recent years, there is a large proportion of patients with incurable osteosarcoma. Investigation of the mechanism of osteosarcoma progression would be of great help in discovering therapeutic targets for this disease. Long non-coding RNAs play critical roles in the pathogenesis of different types of cancer. The current study showed that long non-coding RNA NR_027471 was downregulated in osteosarcoma cells. In vitro and in vivo studies indicated that upregulation of NR_027471 impeded the viability, proliferation, and invasion of osteosarcoma, as well as induced cell cycle arrest at G1. In addition, binding of miR-8055 to NR_027471 was demonstrated, thereby influencing the expression of tumor protein p53 inducible nuclear protein 1 (TP53INP1). Knockdown of NR_027471 promoted epithelial–mesenchymal transition by inhibiting E-cadherin and increasing the expression of zinc finger E-box-binding homeobox 1 (ZEB1), Snail, and fibronectin. These results suggested that overexpression of NR_027471 upregulated TP53INP1 by sponging to miR-8055, leading to suppression of osteosarcoma cell proliferation and progression.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Wujun Miao
- Department of Orthopedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Saishuai Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Mengchen Yin
- Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianning Zhao
- Department of Orthopedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
Xu J, Wu G, Zhao Y, Han Y, Zhang S, Li C, Zhang J. Long Noncoding RNA DSCAM-AS1 Facilitates Colorectal Cancer Cell Proliferation and Migration via miR-137/Notch1 Axis. J Cancer 2020; 11:6623-6632. [PMID: 33046983 PMCID: PMC7545673 DOI: 10.7150/jca.46562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Growing evidences demonstrate that long noncoding RNAs (lncRNAs) participate in various cancers including colorectal cancer (CRC). In the current study, we found that the expression of DSCAM-AS1 in CRC tissues and cell lines was significantly upregulated, and was positively correlated with metastasis status and advanced stage of CRC. In addition, Kaplan-Meier assays also indicated that the expression of DSCAM-AS1 was correlated with poor prognosis in patients with CRC. Silence of DSCAM-AS1 inhibited proliferation and migration of CRC cells. Subcellular fractionation and FISH analyses suggested that DSCAM-AS1 was majorly distributed in cytoplasm of HT29 and LOVO cells. Thus, DSCAM-AS1 might act as a competing endogenous RNA (ceRNA). Subsequently, RT-qPCR results displayed that the expression of miR-137 in CRC tissues was relatively lower than that in the neighboring normal tissues. The interaction between miR-137 and DSCAM-AS1 was demonstrated by luciferase reporter assay. Functionally, miR-137 reversed the pro-proliferation and -metastasis effect of DSCAM-AS1 on CRC cells. Collectively, DSCAM-AS1 promotes CRC progression via sponging miR-137. MiR-137 can suppress the expression of Notch-1, a novel signaling regulating cell proliferation and EMT, by working on the 3'UTR of Notch-1. At last, Notch-1 overexpression or miR-137 inhibition could restore the DSCAM-AS1 silencing-mediated repressive function on cell proliferation and migration. The above data suggested that, DSCAM-AS1 may contribute to CRC cell proliferation and migration by targeting miR-137/Notch-1 axis.
Collapse
Affiliation(s)
- Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, PR China
| | - Guanghai Wu
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, PR China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, PR China
| | - Youkui Han
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, PR China
| | - Shuai Zhang
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, PR China
| | - Chao Li
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, PR China
| | - Judong Zhang
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, PR China
| |
Collapse
|
24
|
Wang W, Li X, Guan C, Hu Z, Zhao Y, Li W, Jiang X. LncRNA PCAT6 promotes the proliferation, migration and invasion of pancreatic ductal adenocarcinoma via regulating miR-185-5p/CBX2 axis. Pathol Res Pract 2020; 216:153074. [PMID: 32825947 DOI: 10.1016/j.prp.2020.153074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/31/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Emerging evidence has revealed markedly roles for long noncoding RNAs (lncRNAs) in various cancer processes. Prostate cancer associated transcript 6 (PCAT6) is a novel lncRNA which displays vital regulatory functions in multiple cancers. However, the functions of PCAT6 in pancreatic ductal adenocarcinoma (PDAC) remain unclear. Our study confirmed that PCAT6 expression was upregulated in PDAC and the expression of PCAT6 was related to TNM stage, lymph node invasion and overall survival of PDAC patients. PCAT6 might act as an effective tumor biomarker for PDAC patients. Moreover, knockdown of PCAT6 inhibited cell proliferation, migration and invasion of PDAC in vitro. For the mechanism, miR-185-5p expression was decreased and chromobox 2 (CBX2) expression was increased in PDAC, and further PCAT6 could upregulated the expression of oncogene CBX2 by sponging miR-185-5p. The results above suggested that PCAT6/miR-185-5p/CBX2 exerted crucial functions in tumorigenesis and progression of PDAC.
Collapse
Affiliation(s)
- Weina Wang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiang Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zengtao Hu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yuqiao Zhao
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenzhi Li
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
25
|
Yao P, Ni Y, Liu C. Long Non-Coding RNA 691 Regulated PTEN/PI3K/AKT Signaling Pathway in Osteosarcoma Through miRNA-9-5p. Onco Targets Ther 2020; 13:4597-4606. [PMID: 32547090 PMCID: PMC7250307 DOI: 10.2147/ott.s249827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Large amounts of researches indicate that non-coding RNAs play a crucial role in many malignancies. However, the potential mechanisms of non-coding RNAs involved in osteosarcoma tumorigenesis remain elusive. Materials and Methods The expression of long non-protein coding RNA 691 (lncRNA 691) in cell lines and paired osteosarcoma tissues was compared by qRT-PCR assay. Then, we explored the tumor suppressor function of lncRNA 691 with MTS and colony formation assay. Flow cytometry results showed lncRNA 691 can enhance cell apoptosis. Then, we predicted and verified the negative regulation relationship with miRNA and the miRNA’s target gene. Lastly, we revealed the tumorigenesis function of lncRNA-691/miRNA/target gene axis in osteosarcoma. Results In our study, we disclosed that lncRNA 691 had low expression levels in osteosarcoma cell lines and tissues. Overexpression of lncRNA 691 could suppress the cell proliferation and induce cell apoptosis in MG-63 cell line. Then, bioinformatics analyses were performed and miR-9-5p was found to negatively regulate the lncRNA 691 expression and promote the osteosarcoma tumorigenesis in vitro. PTEN was predicted as the target gene of miR-9-5p. Luciferase reporter assay and RIP assay demonstrated the regulatory network of lncRNA 691/miR-9-5p/PTEN. We revealed that PTEN was downregulated by the overexpression of miR-9-5p and upregulated by the overexpression of lncRNA 691. At last, the apoptosis-associated protein of the lncRNA 691/miR-9-5p/PTEN/PI3K/AKT was further demonstrated. Conclusion LncRNA 691/miR-9-5p could regulate the tumorigenesis by regulating the PTEN/PI3K/AKT signal pathway in osteosarcoma.
Collapse
Affiliation(s)
- Pengju Yao
- Department of Joint Surgery, Jiaozuo People's Hospital, Henan Province, People's Republic of China
| | - Yangming Ni
- Department of Joint Surgery, Jiaozuo People's Hospital, Henan Province, People's Republic of China
| | - Changlu Liu
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| |
Collapse
|
26
|
Yu D, Xu X, Li S, Zhang K. LINC00514 drives osteosarcoma progression through sponging microRNA-708 and consequently increases URGCP expression. Aging (Albany NY) 2020; 12:6793-6807. [PMID: 32325430 PMCID: PMC7202513 DOI: 10.18632/aging.103043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Long intergenic nonprotein-coding RNA 00514 (LINC00514) is upregulated in papillary thyroid cancer and contributes to its aggressiveness. In this study, we thoroughly explored the expression profile, specific functions, and relevant molecular mechanism of LINC00514 in osteosarcoma (OS). Herein, LINC00514 was significantly upregulated in OS tissues and cells, and increased LINC00514 expression was closely correlated with tumor size, TNM stage, and distant metastasis. OS patients with high LINC00514 expression had shorter overall survival than those with low LINC00514 expression. LINC00514 interference inhibited OS cell proliferation, colony formation, migration, and invasion in vitro but promoted cell apoptosis and G0/G1 cell cycle arrest. LINC00514 downregulation hindered OS tumor growth in vivo. Mechanistically, LINC00514 functioned as a competing endogenous RNA by directly interacting with microRNA-708-5p (miR-708) and consequently increasing the expression of upregulator of cell proliferation (URGCP). Both miR-708 knockdown and URGCP restoration partially neutralized anticancer activities of LINC00514 silencing in OS cells. LINC00514 increases URGCP expression by acting as a competing endogenous RNA for miR-708, thus exerting oncogenic roles in OS progression. In conclusion, the LINC00514/miR-708/URGCP pathway may be a promising target for drug discovery in the future.
Collapse
Affiliation(s)
- Dapeng Yu
- Department of Spine Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Ji’nan 250022, Shandong, China
| | - Xiangyan Xu
- Department of Traumatic Orthopedics, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Ji’nan 250022, Shandong, China
| | - Sufen Li
- Orthopedic and Soft Tissue Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan 250117, Shandong, China
| | - Kai Zhang
- Department of Orthopedics, Shandong Provincial Third Hospital, Ji’nan 250031, Shandong, China
| |
Collapse
|