1
|
Tang J, Zhao Z, Zhou J, Jiao L, Zhou W, Ying B, Yang Y. Multiple CD59 Polymorphisms in Chinese Patients with Mycobacterium tuberculosis Infection. J Immunol Res 2023; 2023:1216048. [PMID: 37050931 PMCID: PMC10083888 DOI: 10.1155/2023/1216048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023] Open
Abstract
Background and Objective. Tuberculosis (TB) is a major threat to human health, especially in developing countries. Its susceptibility and progression depend on interactions between mycobacterium tuberculosis, host immune system, and genetic and environmental factors. Up to now, many studies have presented the association between TB susceptibility and host genetic polymorphisms, but never regarding CD59 gene, which is an essential complement regulator. This study investigated the relationship between multiple CD59 single nucleotide polymorphisms (SNPs) and susceptibility to TB among Chinese patients. Methods. A case–control study was conducted to investigate the SNPs at CD59 rs1047581, rs7046, rs2231460, rs184251026, rs41275164, rs831633, rs704700, rs41275166, and rs10768024 by sequence-specific primer-polymerase chain reaction (SSP-PCR) in 900 tuberculosis patients and 1,534 controls. Results. The minor allele frequencies at rs2231460, rs184251026, rs41275164, and rs41275166 were extremely low both in the Cases (0.00%–0.61%) and in the Controls (0.07%–0.43%), comparatively at rs1047581, rs7046, rs831633, rs704700, and rs10768024 were notably higher both in the Cases (8.23%–48.39%) and in the Controls (8.57%–47.16%). Among the nine SNPs, only homozygous CC genotype at rs10768024 showed a significant protective effect against TB than homozygous TT genotype (OR(95% CI) = 0.59(0.38, 0.91), χ2 = 5.779,
), and homozygous TT and heterozygous CT genotypes showed a significant risk of TB infection in the recessive model (OR(95% CI) = 1.68(1.10, 2.56), χ2 = 5.769,
). Further analysis verified that rs10768024 CC genotype independently related to TB susceptibility (OR(95% CI) = 0.60(0.39, 0.91), Wald χ2 = 5.664,
) in multivariate logistic regression analysis, and its genetic mutation was independent of the other SNPs (r2 = 0.00–0.20) in haplotype analysis. Conclusions. The first investigation of the CD59 gene and susceptibility to TB suggests a significant risk with homozygous TT and heterozygous CT genotypes at rs10768024 loci. The homozygous CC mutation at rs10768024 loci showed a significant protection against TB susceptibility.
Collapse
Affiliation(s)
- Jie Tang
- Department of Laboratory Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Yang
- Department of Laboratory Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| |
Collapse
|
2
|
de Dios R, Santero E, Reyes-Ramírez F. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. Int J Mol Sci 2021; 22:ijms22083900. [PMID: 33918849 PMCID: PMC8103513 DOI: 10.3390/ijms22083900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
The ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most diverse family of alternative σ factors, frequently participate in stress responses. The classification of ECFs in 157 different groups according to their phylogenetic relationships and genomic context has revealed their diversity. Here, we have clustered 55 ECF groups with experimentally studied representatives into two broad classes of stress responses. The remaining 102 groups still lack any mechanistic or functional insight, representing a myriad of systems yet to explore. In this work, we review the main features of ECFs and discuss the different mechanisms controlling their production and activity, and how they lead to a functional stress response. Finally, we focus in more detail on two well-characterized ECFs, for which the mechanisms to detect and respond to stress are complex and completely different: Escherichia coli RpoE, which is the best characterized ECF and whose structural and functional studies have provided key insights into the transcription initiation by ECF-RNAP holoenzymes, and the ECF15-type EcfG, the master regulator of the general stress response in Alphaproteobacteria.
Collapse
|
3
|
Runthala A. Probabilistic divergence of a template-based modelling methodology from the ideal protocol. J Mol Model 2021; 27:25. [PMID: 33411019 DOI: 10.1007/s00894-020-04640-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
Protein structural information is essential for the detailed mapping of a functional protein network. For a higher modelling accuracy and quicker implementation, template-based algorithms have been extensively deployed and redefined. The methods only assess the predicted structure against its native state/template and do not estimate the accuracy for each modelling step. A divergence measure is therefore postulated to estimate the modelling accuracy against its theoretical optimal benchmark. By freezing the domain boundaries, the divergence measures are predicted for the most crucial steps of a modelling algorithm. To precisely refine the score using weighting constants, big data analysis could further be deployed.
Collapse
Affiliation(s)
- Ashish Runthala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India.
| |
Collapse
|
4
|
Runthala A, Sai TH, Kamjula V, Phulara SC, Rajput VS, Sangapillai K. Excavating the functionally crucial active-site residues of the DXS protein of Bacillus subtilis by exploring its closest homologues. J Genet Eng Biotechnol 2020; 18:76. [PMID: 33242110 PMCID: PMC7691408 DOI: 10.1186/s43141-020-00087-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To achieve a high yield of terpenoid-based therapeutics, 1-deoxy-d-xylulose-5-phosphate (DXP) pathway has been significantly exploited for the production of downstream enzymes. The DXP synthase (DXS) enzyme, the initiator of this pathway, is pivotal for the convergence of carbon flux, and is computationally studied well for the industrially utilized generally regarded as safe (GRAS) bacterium Bacillus subtilis to decode its vital regions for aiding the construction of a functionally improved mutant library.
Results
For the 546 sequence dataset of DXS sequences, a representative set of 108 sequences is created, and it shows a significant evolutionary divergence across different species clubbed into 37 clades, whereas three clades are observed for the 76 sequence dataset of Bacillus subtilis. The DXS enzyme, sharing a statistically significant homology to transketolase, is shown to be evolutionarily too distant. By the mutual information-based co-evolutionary network and hotspot analysis, the most crucial loci within the active site are deciphered. The 650-residue representative structure displays a complete conservation of 114 loci, and only two co-evolving residues ASP154 and ILE371 are found to be the conserved ones. Lastly, P318D is predicted to be the top-ranked mutation causing the increase in the thermodynamic stability of 6OUW.
Conclusion
The study excavates the vital functional, phylogenetic, and conserved residues across the active site of the DXS protein, the key rate-limiting controller of the entire pathway. It would aid to computationally understand the evolutionary landscape of this industrially useful enzyme and would allow us to widen its substrate repertoire to increase the enzymatic yield of unnatural molecules for in vivo and in vitro applications.
Collapse
|
5
|
Casas-Pastor D, Diehl A, Fritz G. Coevolutionary Analysis Reveals a Conserved Dual Binding Interface between Extracytoplasmic Function σ Factors and Class I Anti-σ Factors. mSystems 2020; 5:e00310-20. [PMID: 32753504 PMCID: PMC7406223 DOI: 10.1128/msystems.00310-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Extracytoplasmic function σ factors (ECFs) belong to the most abundant signal transduction mechanisms in bacteria. Among the diverse regulators of ECF activity, class I anti-σ factors are the most important signal transducers in response to internal and external stress conditions. Despite the conserved secondary structure of the class I anti-σ factor domain (ASDI) that binds and inhibits the ECF under noninducing conditions, the binding interface between ECFs and ASDIs is surprisingly variable between the published cocrystal structures. In this work, we provide a comprehensive computational analysis of the ASDI protein family and study the different contact themes between ECFs and ASDIs. To this end, we harness the coevolution of these diverse protein families and predict covarying amino acid residues as likely candidates of an interaction interface. As a result, we find two common binding interfaces linking the first alpha-helix of the ASDI to the DNA-binding region in the σ4 domain of the ECF, and the fourth alpha-helix of the ASDI to the RNA polymerase (RNAP)-binding region of the σ2 domain. The conservation of these two binding interfaces contrasts with the apparent quaternary structure diversity of the ECF/ASDI complexes, partially explaining the high specificity between cognate ECF and ASDI pairs. Furthermore, we suggest that the dual inhibition of RNAP- and DNA-binding interfaces is likely a universal feature of other ECF anti-σ factors, preventing the formation of nonfunctional trimeric complexes between σ/anti-σ factors and RNAP or DNA.IMPORTANCE In the bacterial world, extracytoplasmic function σ factors (ECFs) are the most widespread family of alternative σ factors, mediating many cellular responses to environmental cues, such as stress. This work uses a computational approach to investigate how these σ factors interact with class I anti-σ factors-the most abundant regulators of ECF activity. By comprehensively classifying the anti-σs into phylogenetic groups and by comparing this phylogeny to the one of the cognate ECFs, the study shows how these protein families have coevolved to maintain their interaction over evolutionary time. These results shed light on the common contact residues that link ECFs and anti-σs in different phylogenetic families and set the basis for the rational design of anti-σs to specifically target certain ECFs. This will help to prevent the cross talk between heterologous ECF/anti-σ pairs, allowing their use as orthogonal regulators for the construction of genetic circuits in synthetic biology.
Collapse
Affiliation(s)
- Delia Casas-Pastor
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Angelika Diehl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Georg Fritz
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|