1
|
Rattanapan Y, Nongwa K, Supanpong C, Satsadeedat C, Sai-ong T, Kooltheat N, Chareonsirisuthigul T. Downregulation of miR-25-3p and Its Impact on PTAFR and IGF2BP3 Expression in Type 2 Diabetes Mellitus: Implications for Biomarker Discovery and Disease Pathogenesis. J Clin Med Res 2024; 16:536-546. [PMID: 39635336 PMCID: PMC11614410 DOI: 10.14740/jocmr6099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Background This study is designed to investigate the differential microRNA (miRNA) expression profiles in individuals with and without type 2 diabetes mellitus (T2DM). The focus is on miRNAs that play a crucial role in the onset and progression of T2DM, particularly in glucose metabolism, inflammation, platelet reactivity, and endothelial dysfunction. Methods Twenty samples were categorized into groups of T2DM and non-T2DM, and miRNA profiling was conducted using microarray analysis. The expression levels of the candidate miR-25-3p, as well as its target genes platelet-activating factor receptor (PTAFR) and insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), were validated using quantitative polymerase chain reaction (qPCR). Results The present study revealed a significant reduction in the level of miR-25-3p in the T2DM group compared to the non-T2DM group. This suggests higher levels of PTAFR and IGF2BP3 in individuals with T2DM, indicating a potential biomarker for the condition. Conclusions The downregulation of miR-25-3p, which is associated with increased PTAFR levels, may contribute to heightened platelet reactivity and inflammation, worsening endothelial dysfunction, and potentially influencing vascular complications in diabetes. Additionally, the upregulation of IGF2BP3 is correlated with insulin resistance and β-cell dysfunction, which may contribute to elevated hyperglycemia and hyperinsulinemia, further aggravating the progression of diabetes. These findings highlight the potential of miR-25-3p and IGF2BP3 as biomarkers for T2DM and suggest their possible relevance for improving diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yanisa Rattanapan
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Kallayarat Nongwa
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chanoknan Supanpong
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chanasorn Satsadeedat
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Thaveesak Sai-ong
- School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nateelak Kooltheat
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Hussain MS, Shaikh NK, Agrawal M, Tufail M, Bisht AS, Khurana N, Kumar R. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding. Pathol Res Pract 2024; 255:155186. [PMID: 38350169 DOI: 10.1016/j.prp.2024.155186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Osteomyelitis, a debilitating bone infection, presents considerable clinical challenges due to its intricate etiology and limited treatment options. Despite strides in surgical and chemotherapeutic interventions, the treatment landscape for osteomyelitis remains unsatisfactory. Recent attention has focused on the role of non-coding RNAs (ncRNAs) in the pathogenesis and progression of osteomyelitis. This review consolidates current knowledge on the involvement of distinct classes of ncRNAs, including microRNAs, long ncRNAs, and circular RNAs, in the context of osteomyelitis. Emerging evidence from various studies underscores the potential of ncRNAs in orchestrating gene expression and influencing the differentiation of osteoblasts and osteoclasts, pivotal processes in bone formation. The review initiates by elucidating the regulatory functions of ncRNAs in fundamental cellular processes such as inflammation, immune response, and bone remodeling, pivotal in osteomyelitis pathology. It delves into the intricate network of interactions between ncRNAs and their target genes, illuminating how dysregulation contributes to the establishment and persistence of osteomyelitic infections. Understanding their regulatory roles may pave the way for targeted diagnostic tools and innovative therapeutic interventions, promising a paradigm shift in the clinical approach to this challenging condition. Additionally, we delve into the promising therapeutic applications of these molecules, envisioning novel diagnostic and treatment approaches to enhance the management of this challenging bone infection.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210 Gujarat, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Ni J, Zhang Q, Lei F. Non-invasive diagnostic potential of salivary miR-25-3p for periodontal disease and osteoporosis among a cohort of elderly patients with type 2 diabetes mellitus. BMC Oral Health 2023; 23:318. [PMID: 37221590 DOI: 10.1186/s12903-023-02992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE Osteoporosis (OP) and periodontal disease (PD) are two common health issues that threaten the older population and potentially connected each other in the context of type 2 diabetes mellitus (T2DM). Dysregulated expression of microRNAs (miRNAs) may contribute to the development and progression of both OP and PD among elderly T2DM patients. The present study aimed to evaluate the accuracy of miR-25-3p expression for the detection of OP and PD when compared to a mixed group of patients with T2DM. METHODS The study recruited 45 T2DM patients with normal bone mineral density (BMD) and healthy periodontium, 40 type 2 diabetic osteoporosis patients coexistent with PD, 50 type 2 diabetic osteoporosis patients with healthy periodontium, and 52 periodontally healthy individuals. miRNA expression measurements in the saliva were determined by real-time PCR. RESULTS The salivary expression of miR-25-3p was higher in type 2 diabetic osteoporosis patients than patients with T2DM only and healthy individuals (P < 0.05). Among type 2 diabetic osteoporosis patients, those with PD exhibited a higher salivary expression of miR-25-3p than those with healthy periodontium (P < 0.05). Among type 2 diabetic patients with healthy periodontium, a higher salivary expression of miR-25-3p was noted in those with OP than those without (P < 0.05). We also found a higher salivary expression of miR-25-3p in T2DM patients than healthy individuals (P < 0.05). It was revealed that the salivary expression of miR-25-3p was increased as the T scores of BMD of patients were lowered, the PPD and CAL values of patients were enhanced. The salivary expression of miR-25-3p used as a test to predict a diagnosis of PD among type 2 diabetic osteoporosis patients, a diagnosis of OP among type 2 diabetic patients, and a diagnosis of T2DM among healthy individuals produced AUC of 0.859. 0.824, and 0.886, respectively. CONCLUSION The findings obtained from the study support salivary miR-25-3p confers non-invasive diagnostic potential for PD and OP among a cohort of elderly T2DM patients.
Collapse
Affiliation(s)
- Jing Ni
- Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Qiong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Fei Lei
- Department of Stomatology, The Second Affiliated Hospital of Xi'an Medical University, No. 167, Fangdong Street, Baqiao District, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
5
|
Yu D, Li Z, Cao J, Shen F, Wei G. microRNA-25-3p suppresses osteogenic differentiation of BMSCs in patients with osteoporosis by targeting ITGB3. Acta Histochem 2022; 124:151926. [PMID: 35777302 DOI: 10.1016/j.acthis.2022.151926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022]
Abstract
This study was conducted to investigate the impact of the microRNA (miR)-25-3p/ITGB3 axis on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from patients with osteoporosis (OP). BMSCs isolated from the bone marrow of healthy controls and OP patients were identified by flow cytometry, in which ITGB3 mRNA and miR-25-3p expression was detected by RT-qPCR and ITGB3, Runx2, OPN, ALP, and OSX protein expression by western blot. The binding between ITGB3 and miR-25-3p was assessed by dual-luciferase reporter gene and Ago2-RIP assays. BMSC osteogenic differentiation was observed by alizarin red staining and ALP activity. The differentiation of BMSCs to adipocytes and chondrocytes was measured by oil red O staining and alcian blue staining, respectively. BMSCs were successfully isolated from the bone marrow of healthy controls (normal-BMSCs) and OP patients (OP-BMSCs). ITGB3, Runx2, OPN, ALP, and OSX expression was poorer and miR-25-3p expression was higher in OP-BMSCs than in normal-BMSCs. Mechanistically, ITGB3 was negatively targeted by miR-25-3p. After osteogenic, adipogenic, and chondrogenic differentiation of BMSCs were successfully induced, adipogenic differentiation increased and osteogenic and chondrogenic differentiation decreased in OP-BMSCs compared with normal-BMSCs. Overexpression of ITGB3 facilitated mineralized nodule formation and elevated ALP activity and Runx2, OPN, and ALP expression in OP-BMSCs. miR-25-3p upregulation diminished mineralized nodule formation, ALP activity, and Runx2, OPN, and ALP expression in OP-BMSCs and normal-BMSCs, which was annulled by additional ITGB3 overexpression. miR-25-3p targets ITGB3, thereby suppressing osteogenic differentiation of BMSCs from OP patients.
Collapse
Affiliation(s)
- Dongping Yu
- Department of Orthopedics, the First Hospital of Nanchang, Nanchang, Jiangxi 330008, PR China
| | - Zhen Li
- Department of Pathology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China.
| | - Jie Cao
- Department of Digestive, the First Hospital of Nanchang, Nanchang, Jiangxi 330008, PR China
| | - Feng Shen
- Department of Orthopedics, the First Hospital of Nanchang, Nanchang, Jiangxi 330008, PR China
| | - Guowen Wei
- Department of Orthopedics, the First Hospital of Nanchang, Nanchang, Jiangxi 330008, PR China
| |
Collapse
|
6
|
Yang C, Zhou Q, Ma Q, Wang L, Yang Y, Chen G. Differentially Expressed miRNAs and mRNAs in Regenerated Scales of Rainbow Trout ( Oncorhynchus mykiss) under Salinity Acclimation. Animals (Basel) 2022; 12:ani12101265. [PMID: 35625112 PMCID: PMC9137548 DOI: 10.3390/ani12101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In order to explore the potential effects of salinity acclimation on bone metabolism of rainbow trout (Oncorhynchus mykiss), transcriptional information of regenerated scales under salinity acclimation (sea water, SW) was compared to those of fish under fresh water (FW) environments. According to the high-throughput sequencing results, a total of 2620 significantly differentially expressed genes (DEGs) were identified in the data of SW vs. FW. Compared with the FW group, six significantly downregulated and 44 significantly upregulated miRNAs were identified in the SW scales (p < 0.05). Furthermore, a total of 994 significantly differentially expressed target genes (DETGs) were identified from the 50 significantly differentially expressed miRNAs (DE miRNAs). Gene ontology analysis of the aforementioned DETGs was similar to the results of the differentially expressed genes (DEGs) obtained from mRNA-seq data, these genes were mainly related to ion metabolism. KEGG enrichment analysis of the DEGs and DETGs suggested that many significantly enriched pathways were related to the energy metabolism pathway.
Collapse
Affiliation(s)
- Changgeng Yang
- Life Science & Technology School, Lingnan Normal University, Zhanjiang 524048, China;
| | - Qiling Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
- Correspondence:
| | - Liuyong Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
| | - Yunsheng Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| |
Collapse
|
7
|
Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022; 79:287. [PMID: 35536437 PMCID: PMC11071904 DOI: 10.1007/s00018-022-04298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Cai J, Li C, Li S, Yi J, Wang J, Yao K, Gan X, Shen Y, Yang P, Jing D, Zhao Z. A Quartet Network Analysis Identifying Mechanically Responsive Long Noncoding RNAs in Bone Remodeling. Front Bioeng Biotechnol 2022; 10:780211. [PMID: 35356768 PMCID: PMC8959777 DOI: 10.3389/fbioe.2022.780211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mechanical force, being so ubiquitous that it is often taken for granted and overlooked, is now gaining the spotlight for reams of evidence corroborating their crucial roles in the living body. The bone, particularly, experiences manifold extraneous force like strain and compression, as well as intrinsic cues like fluid shear stress and physical properties of the microenvironment. Though sparkled in diversified background, long noncoding RNAs (lncRNAs) concerning the mechanotransduction process that bone undergoes are not yet detailed in a systematic way. Our principal goal in this research is to highlight the potential lncRNA-focused mechanical signaling systems which may be adapted by bone-related cells for biophysical environment response. Based on credible lists of force-sensitive mRNAs and miRNAs, we constructed a force-responsive competing endogenous RNA network for lncRNA identification. To elucidate the underlying mechanism, we then illustrated the possible crosstalk between lncRNAs and mRNAs as well as transcriptional factors and mapped lncRNAs to known signaling pathways involved in bone remodeling and mechanotransduction. Last, we developed combinative analysis between predicted and established lncRNAs, constructing a pathway–lncRNA network which suggests interactive relationships and new roles of known factors such as H19. In conclusion, our work provided a systematic quartet network analysis, uncovered candidate force-related lncRNAs, and highlighted both the upstream and downstream processes that are possibly involved. A new mode of bioinformatic analysis integrating sequencing data, literature retrieval, and computational algorithm was also introduced. Hopefully, our work would provide a moment of clarity against the multiplicity and complexity of the lncRNA world confronting mechanical input.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Shun Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Pu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, China Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| |
Collapse
|
9
|
Byun JS, Lee HY, Tian J, Moon JS, Choi J, Lee SH, Kim YG, Yi HS. Effect of Salivary Exosomal miR-25-3p on Periodontitis With Insulin Resistance. Front Immunol 2022; 12:775046. [PMID: 35069547 PMCID: PMC8777127 DOI: 10.3389/fimmu.2021.775046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is caused by an oral microbial dysbiosis-mediated imbalance of the local immune microenvironment, which is promoted by insulin resistance and obesity. The prevalence and severity of periodontitis is higher in patients with type 2 diabetes than in healthy individuals, possibly because of differences in immune responses. The level of glycemic control also affects the saliva profile, which may further promote periodontal disease in diabetes patients. Therefore, we compared the salivary exosomal miRNA profiles of patients with type 2 diabetes with those of healthy individuals, and we found that exosomal miR-25-3p in saliva is significantly enriched (by approximately 2-fold, p < 0.01) in obese patients with type 2 diabetes. We also identified CD69 mRNA as a miR-25-3p target that regulates both activation of γδ T cells and the inflammatory response. Knockdown of CD69 increased (by approximately 2-fold) interleukin-17A production of γδ T cells in vitro. To evaluate the role of exosomal miRNA on progression of periodontitis, we analyzed regional immune cells in both periodontal tissues and lymph nodes from mice with periodontitis. We found that diet-induced obesity increased the population of infiltrating pro-inflammatory immune cells in the gingiva and regional lymph nodes of these mice. Treatment with miR-25-3p inhibitors prevented the local in vivo inflammatory response in mice with periodontitis and diet-induced obesity. Finally, we showed that suppression of interleukin 17-mediated local inflammation by a miR-25-3p inhibitor alleviated (by approximately 34%) ligature-induced periodontal alveolar bone loss in mice. Taken together, these data suggest that exosomal miR-25-3p in saliva contributes to development and progression of diabetes-associated periodontitis. Discovery of additional miR-25-3p targets may provide critical insights into developing drugs to treat periodontitis by regulating γδ T cell-mediated local inflammation.
Collapse
Affiliation(s)
- Jin-Seok Byun
- Department of Oral Medicine, Kyungpook National University School of Dentistry, Daegu, South Korea
| | - Ho Yeop Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, South Korea.,Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jingwen Tian
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, South Korea.,Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ji Sun Moon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, South Korea.,Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jaejin Choi
- Department of Research and Development, Panagene Inc., Daejeon, South Korea
| | - Sang-Hee Lee
- Bio-Electron Microscopy Research Center (104-Dong), Korea Basic Science Institute, Cheongju, South Korea
| | - Yong-Gun Kim
- Department of Periodontology, Kyungpook National University School of Dentistry, Daegu, South Korea
| | - Hyon-Seung Yi
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, South Korea.,Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
10
|
Lin S, Wu J, Chen B, Li S, Huang H. Identification of a Potential MiRNA-mRNA Regulatory Network for Osteoporosis by Using Bioinformatics Methods: A Retrospective Study Based on the Gene Expression Omnibus Database. Front Endocrinol (Lausanne) 2022; 13:844218. [PMID: 35620387 PMCID: PMC9128237 DOI: 10.3389/fendo.2022.844218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/04/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION As a systemic skeletal dysfunction, osteoporosis (OP) is characterized by low bone mass, impairment of bone microstructure, and a high global morbidity rate. There is increasing evidence that microRNAs (miRNAs) are associated with the pathogenesis of OP. Weighted gene co-expression network analysis (WGCNA) is a systematic method for identifying clinically relevant genes involved in disease pathogenesis. However, the study of the miRNA-messenger RNA (mRNA) regulatory network in combination with WGCNA in OP is still lacking. METHODS The GSE93883 and GSE7158 microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DE-miRNAs) and differentially expressed genes (DEGs) were analyzed with the limma package. OP-related miRNAs from the most clinically relevant module were identified by the WGCNA method. The overlap of DE-miRNAs and OP-related miRNAs was identified as OP-related DE-miRNAs. Both upstream transcription factors and downstream targets of OP-related DE-miRNAs were predicted by FunRich. An intersection of predicted target genes and DEGs was confirmed as downstream target genes of OP-related DE-miRNAs. With the use of clusterProfiler in R, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed on target genes. Finally, both the protein-protein interaction (PPI) network and miRNA-mRNA network were constructed and analyzed. RESULTS A total of 79 OP-related DE-miRNAs were obtained, most of which were predicted to be regulated by specificity protein 1 (SP1). Subsequently, 197 downstream target genes were screened out. The target genes were enriched in multiple pathways, including signaling pathways closely related to the onset of OP, such as Ras, PI3K-Akt, and ErbB signaling pathways. Through the construction of the OP-related miRNA-mRNA regulatory network, a hub network that may play a prominent role in the formation of OP was documented. CONCLUSION By using WGCNA, we constructed a potential OP-related miRNA-mRNA regulatory network, offering a novel perspective on miRNA regulatory mechanisms in OP.
Collapse
Affiliation(s)
- Shi Lin
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jianjun Wu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Baixing Chen
- Department of Development and Regeneration, KU Leuven, University of Leuven, Leuven, Belgium
| | - Shaoshuo Li
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Hongxing Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
- *Correspondence: Hongxing Huang,
| |
Collapse
|
11
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
12
|
Li Z, Xue H, Tan G, Xu Z. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Mol Med Rep 2021; 24:788. [PMID: 34505632 PMCID: PMC8441966 DOI: 10.3892/mmr.2021.12428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
Osteoporosis is a common metabolic bone disorder typically characterized by decreased bone mass and an increased risk of fracture. At present, the detailed molecular mechanism underlying the development of osteoporosis remains to be elucidated. Accumulating evidence shows that non-coding (nc)RNAs, such as microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs), play significant roles in osteoporosis through the post-transcriptional regulation of gene expression as regulatory factors. Previous studies have demonstrated that ncRNAs participate in maintaining bone homeostasis by regulating physiological and developmental processes in osteoblasts, osteoclasts and bone marrow stromal cells. In the present review, the latest research investigating the involvement of miRNAs, lncRNAs and circRNAs in regulating the differentiation, proliferation, apoptosis and autophagy of cells that maintain the bone microenvironment in osteoporosis is summarized. Deeper insight into the aspects of osteoporosis pathogenesis involving the deregulation of ncRNAs could facilitate the development of therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Haipeng Xue
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Guoqing Tan
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Zhanwang Xu
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
13
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Rahmani S, Shoorei H, Taheri M, Samadian M. Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. Biomed Pharmacother 2021; 142:111942. [PMID: 34311172 DOI: 10.1016/j.biopha.2021.111942] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs have been found to regulate several developmental processes among them is osteogenesis. Although these transcripts have several distinct classes, two classes i.e. microRNAs and long non-coding RNAs have attained more attention. These transcripts regulate intramembranous as well as endochondral ossification processes. The effects of microRNAs on osteogenesis are mostly mediated through modulation of Wnt/β-catenin and TGFβ/BMP pathways. Long non-coding RNAs can directly affect expression of these pathways or osteogenic transcription factors. Moreover, they can serve as a molecular sponge for miRNAs. MALAT1/miR-30, MALAt1/miR-214, LEF1-AS1/miR-24-3p, MCF2L-AS1/miR-33a, MSC-AS1/miR-140-5p and KCNQ1OT1/miR-214 are examples of such kind of interaction between lncRNAs and miRNAs in the context of osteogenesis. In the current paper, we explain these two classes of non-coding RNAs in the osteogenesis and related disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Kaur M, Nagpal M, Singh M. Osteoblast-n-Osteoclast: Making Headway to Osteoporosis Treatment. Curr Drug Targets 2020; 21:1640-1651. [DOI: 10.2174/1389450121666200731173522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022]
Abstract
Background:
Bone is a dynamic tissue that continuously undergoes the modeling and remodeling
process to maintain its strength and firmness. Bone remodeling is determined by the functioning
of osteoblast and osteoclast cells. The imbalance between the functioning of osteoclast and osteoblast
cells leads to osteoporosis. Osteoporosis is divided into primary and secondary osteoporosis.
Generally, osteoporosis is diagnosed by measuring bone mineral density (BMD) and various osteoblast
and osteoclast cell markers.
Methods:
Relevant literature reports have been studied and data has been collected using various
search engines like google scholar, scihub, sciencedirect, pubmed, etc. A thorough understanding of
the mechanism of bone targeting strategies has been discussed and related literature has been studied
and compiled.
Results:
Bone remodeling process has been described in detail including various approaches for targeting
bone. Several bone targeting moieties have been stated in detail along with their mechanisms.
Targeting of osteoclasts and osteoblasts using various nanocarriers has been discussed in separate sections.
The toxicity issues or Biosafety related to the use of nanomaterials have been covered.
Conclusion:
The treatment of osteoporosis targets the inhibition of bone resorption and the use of
agents that promote bone mineralization to slow disease progression. Current osteoporosis therapy involves
the use of targeting moieties such as bisphosphonates and tetracyclines for targeting various
drugs. Nanotechnology has been used for targeting various drug molecules such as RANKLinhibitors,
parathyroid hormone analogues, estrogen agonists and antagonists, Wnt signaling enhancer
and calcitonin specifically to bone tissue (osteoclast and osteoblasts). So, a multicomponent treatment
strategy targeting both the bone cells will be more effective rather than targeting only osteoclasts and
it will be a potential area of research in bone targeting used to treat osteoporosis.
The first section of the review article covers various aspects of bone targeting. Another section comprises
details of various targeting moieties such as bisphosphonates, tetracyclines; and various
nanocarriers developed to target osteoclast and osteoblast cells and summarized data on in vivo models
has been used for assessment of bone targeting, drawbacks of current strategies and future perspectives.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
15
|
Jiang Y, Zhang J, Li Z, Jia G. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-25 Regulates the Ubiquitination and Degradation of Runx2 by SMURF1 to Promote Fracture Healing in Mice. Front Med (Lausanne) 2020; 7:577578. [PMID: 33425934 PMCID: PMC7793965 DOI: 10.3389/fmed.2020.577578] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence has demonstrated that mesenchymal stem cells (MSCs) can release a large number of functionally specific microRNA (miRNA) microvesicles that play a role in promoting osteogenic differentiation, but the specific mechanism is not yet clear. Under such context, this study aims to elucidate the mechanism of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) promoting fracture healing in mice. We isolated and identified the BMSC-Exo. Bioinformatics analysis predicted high expression of miRNA in exosomes and verified the transfer of miR-25 in exosomes by immunofluorescence. Targeting relationship between miR-25 and Smad ubiquitination regulatory factor-1 (SMURF1) was predicted and verified by dual-luciferase reporter gene assay. Immunoprecipitation and protein stability assays were used to detect Runt-related transcription factor 2 (Runx2) ubiquitination and the effect of SMURF1 on Runx2 ubiquitination, respectively. The effect of miR-25 in BMSC-Exo on fracture healing in mice was assessed using X-ray imaging. alkaline phosphatase, alizarin red staining, EdU, CCK-8, and Transwell were used to evaluate the effects of exosomes transferred miR-25 on osteogenic differentiation, proliferation, and migration of osteoblasts. Bioinformatics analysis predicted that miR-25 expression in exosomes increased significantly. Moreover, the targeted regulation of SMURF1 by miR-25 was verified. SMURF1 inhibited Runx2 protein expression by promoting ubiquitination degradation of Runx2. Notably, miR-25 secreted by BMSC-Exo can accelerate osteogenic differentiation, proliferation, and migration of osteoblasts through SMURF1/Runx2 axis. Our results demonstrate that miR-25 in BMSC-Exo regulates the ubiquitination degradation of Runx2 by SMURF1 to promote fracture healing in mice.
Collapse
Affiliation(s)
- Yikun Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jun Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guoliang Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Integrative p53, micro-RNA and Cathepsin Protease Co-Regulatory Expression Networks in Cancer. Cancers (Basel) 2020; 12:cancers12113454. [PMID: 33233599 PMCID: PMC7699684 DOI: 10.3390/cancers12113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the transcriptional regulation of cathepsin protease genes by micro-RNAs that are connected to p53 activation. While it has been demonstrated that the p53 protein can directly regulate some cathepsin genes and the expression of their upstream regulatory micro-RNAs, very little is known about what input the p53 isoform proteins may have in regulating this relationship. Herein, we draw attention to this important regulatory aspect in the context of describing mechanisms that are being established for the micro-RNA regulation of cathepsin protease genes and their collective use in diagnostic or prognostic assays. Abstract As the direct regulatory role of p53 and some of its isoform proteins are becoming established in modulating gene expression in cancer research, another aspect of this mode of gene regulation that has captured significant interest over the years is the mechanistic interplay between p53 and micro-RNA transcriptional regulation. The input of this into modulating gene expression for some of the cathepsin family members has been viewed as carrying noticeable importance based on their biological effects during normal cellular homeostasis and cancer progression. While this area is still in its infancy in relation to general cathepsin gene regulation, we review the current p53-regulated micro-RNAs that are generating significant interest through their regulation of cathepsin proteases, thereby strengthening the link between activated p53 forms and cathepsin gene regulation. Additionally, we extend our understanding of this developing relationship to how such micro-RNAs are being utilized as diagnostic or prognostic tools and highlight their future uses in conjunction with cathepsin gene expression as potential biomarkers within a clinical setting.
Collapse
|
17
|
Legrand MA, Millet M, Merle B, Rousseau JC, Hemmendinger A, Gineyts E, Sornay-Rendu E, Szulc P, Borel O, Croset M, Chapurlat R. A Signature of Circulating miRNAs Associated With Fibrous Dysplasia of Bone: the mirDys Study. J Bone Miner Res 2020; 35:1881-1892. [PMID: 32526052 DOI: 10.1002/jbmr.4111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/05/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022]
Abstract
Fibrous dysplasia (FD) is a rare bone disease caused by activating mutations of GNAS encoding the Gsα protein, enhancing cyclic adenosine monophosphate (cAMP) production by overstimulation of adenylyl cyclase and impairing osteoblastic differentiation. The clinical presentation ranges from asymptomatic to polyostotic forms with severe disability, explained by the mosaic distribution of the GNAS mutation. Physicians have to deal with the gap of knowledge in FD pathogenesis, the absence of prognostic markers and the lack of specific treatment. The identification of specific biomarkers for FD is an important step to improve the clinical and therapeutic approaches. An epigenetic regulation driven by microRNAs (miRNAs), known as promising biomarkers in bone disease, could be involved in FD. We have sought circulating miRNAs that are differentially expressed in FD patients compared to controls and would reflect dysregulations of osteogenesis-related genes and bone disorder. The global miRNA profiling was performed using Next Generation Sequencing in patient serum collected from a discovery cohort of 20 patients (10 polyostotic and 10 monostotic) and 10 controls. From these, we selected 19 miRNAs for a miRNA validation phase from serum of 82 patients and 82 controls, using real-time qPCR. Discovery screening identified 111 miRNAs differentially expressed in patient serum, after adjusting for the false discovery rate (FDR). Among the 82 patients, 55% were polyostotic, and 73% were women with a mean age of 42 years. Six miRNAs (miR-25-3p, miR-93-5p, miR-182-5p, miR-324-5p, miR-363-3p, and miR-451a) were significantly overexpressed in serum, with FDR <0.05. The expression level of these six miRNAs was not associated with the FD severity. In conclusion, we identified a signature of circulating miRNAs associated with FD. These miRNAs are potential negative regulators of gene expression in bone cell progenitors, suggesting their activity in FD by interfering with osteoblastic and osteoclastic differentiation to impair bone mineralization and remodeling processes. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mélanie A Legrand
- Department of Rheumatology, Edouard Herriot University Hospital, Lyon, France.,INSERM UMR 1033, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | - Pawel Szulc
- INSERM UMR 1033, Université de Lyon, Lyon, France
| | | | | | - Roland Chapurlat
- Department of Rheumatology, Edouard Herriot University Hospital, Lyon, France.,INSERM UMR 1033, Université de Lyon, Lyon, France
| |
Collapse
|