1
|
Kanai M, Nishino T, Daassi D, Kimura A, Liao CW, Javanfekr Shahri Z, Wakimoto A, Gogoleva N, Usui T, Morito N, Arita M, Takahashi S, Hamada M. MAFB in Macrophages Regulates Prostaglandin E2-Mediated Lipid Mediator Class Switch through ALOX15 in Ischemic Acute Kidney Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1212-1224. [PMID: 39230290 PMCID: PMC11457724 DOI: 10.4049/jimmunol.2300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Monocytes and macrophages express the transcription factor MAFB (V-maf musculoaponeurotic fibrosarcoma oncogene homolog B) and protect against ischemic acute kidney injury (AKI). However, the mechanism through which MAFB alleviates AKI in macrophages remains unclear. In this study, we induced AKI in macrophage lineage-specific Mafb-deficient mice (C57BL/6J) using the ischemia-reperfusion injury model to analyze these mechanisms. Our results showed that MAFB regulates the expression of Alox15 (arachidonate 15-lipoxygenase) in macrophages during ischemic AKI. The expression of ALOX15 was significantly decreased at the mRNA and protein levels in macrophages that infiltrated the kidneys of macrophage-specific Mafb-deficient mice at 24 h after ischemia-reperfusion injury. ALOX15 promotes the resolution of inflammation under acute conditions by producing specialized proresolving mediators by oxidizing essential fatty acids. Therefore, MAFB in macrophages promotes the resolution of inflammation in ischemic AKI by regulating the expression of Alox15. Moreover, MAFB expression in macrophages is upregulated via the COX-2/PGE2/EP4 pathway in ischemic AKI. Our in vitro assay showed that MAFB regulates the expression of Alox15 under the COX-2/PGE2/EP4 pathway in macrophages. PGE2 mediates the lipid mediator (LM) class switch from inflammatory LMs to specialized proresolving mediators. Therefore, MAFB plays a key role in the PGE2-mediated LM class switch by regulating the expression of Alox15. Our study identified a previously unknown mechanism by which MAFB in macrophages alleviates ischemic AKI and provides new insights into regulating the LM class switch in acute inflammatory conditions.
Collapse
Affiliation(s)
- Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Teppei Nishino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Dhouha Daassi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akari Kimura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Zeynab Javanfekr Shahri
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Natalia Gogoleva
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiaki Usui
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoki Morito
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; and
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
2
|
Yadav MK, Ishida M, Gogoleva N, Liao CW, Salim FN, Kanai M, Kuno A, Hayashi T, Shahri ZJ, Kulathunga K, Samir O, Lyu W, Olivia O, Mbanefo EC, Takahashi S, Hamada M. MAFB in macrophages regulates cold-induced neuronal density in brown adipose tissue. Cell Rep 2024; 43:113978. [PMID: 38522069 DOI: 10.1016/j.celrep.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Transcription factor MAFB regulates various homeostatic functions of macrophages. This study explores the role of MAFB in brown adipose tissue (BAT) thermogenesis using macrophage-specific Mafb-deficient (Mafbf/f::LysM-Cre) mice. We find that Mafb deficiency in macrophages reduces thermogenesis, energy expenditure, and sympathetic neuron (SN) density in BAT under cold conditions. This phenotype features a proinflammatory environment that is characterized by macrophage/granulocyte accumulation, increases in interleukin-6 (IL-6) production, and IL-6 trans-signaling, which lead to decreases in nerve growth factor (NGF) expression and reduction in SN density in BAT. We confirm MAFB regulation of IL-6 expression using luciferase readout driven by IL-6 promoter in RAW-264.7 macrophage cell lines. Immunohistochemistry shows clustered organization of NGF-producing cells in BAT, which are primarily TRPV1+ vascular smooth muscle cells, as additionally shown using single-cell RNA sequencing and RT-qPCR of the stromal vascular fraction. Treating Mafbf/f::LysM-Cre mice with anti-IL-6 receptor antibody rescues SN density, body temperature, and energy expenditure.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan; National Institutes of Health, Bethesda, MD 20892, USA
| | - Megumi Ishida
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Natalia Gogoleva
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Filiani Natalia Salim
- Centre for Medical Science and Technology and Healthcare Equity, Parahyangan Catholic University, Bandung 40141, Indonesia
| | - Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Zeynab Javanfekr Shahri
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Omar Samir
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Wenxin Lyu
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Olivia Olivia
- Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
3
|
Fujino M, Ojima M, Takahashi S. Exploring Large MAF Transcription Factors: Functions, Pathology, and Mouse Models with Point Mutations. Genes (Basel) 2023; 14:1883. [PMID: 37895232 PMCID: PMC10606904 DOI: 10.3390/genes14101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Large musculoaponeurotic fibrosarcoma (MAF) transcription factors contain acidic, basic, and leucine zipper regions. Four types of MAF have been elucidated in mice and humans, namely c-MAF, MAFA, MAFB, and NRL. This review aimed to elaborate on the functions of MAF transcription factors that have been studied in vivo so far, as well as describe the pathology of human patients and corresponding mouse models with c-MAF, MAFA, and MAFB point mutations. To identify the functions of MAF transcription factors in vivo, we generated genetically modified mice lacking c-MAF, MAFA, and MAFB and analyzed their phenotypes. Further, in recent years, c-MAF, MAFA, and MAFB have been identified as causative genes underpinning many rare diseases. Careful observation of human patients and animal models is important to examine the pathophysiological mechanisms underlying these conditions for targeted therapies. Murine models exhibit phenotypes similar to those of human patients with c-MAF, MAFA, and MAFB mutations. Therefore, generating these animal models emphasizes their usefulness for research uncovering the pathophysiology of point mutations in MAF transcription factors and the development of etiology-based therapies.
Collapse
Affiliation(s)
- Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
4
|
Lerman MA, Francavilla M, Waqar‐Cowles L, Levine MA. Denosumab Treatment Does Not Halt Progression of Bone Lesions in Multicentric Carpotarsal Osteolysis Syndrome. JBMR Plus 2023; 7:e10729. [PMID: 37197321 PMCID: PMC10184019 DOI: 10.1002/jbm4.10729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Here we report the use of denosumab, a monoclonal antibody against receptor activator of nuclear factor κB ligand (RANKL), as monotherapy for multicentric carpotarsal osteolysis syndrome (MCTO) in an 11.5-year-old male with a heterozygous missense mutation in MAFB (c.206C>T; p.Ser69Leu). We treated the subject with 0.5 mg/kg denosumab every 60-90 days for 47 months and monitored bone and mineral metabolism, kidney function, joint range of motion (ROM), and bone and joint morphology. Serum markers of bone turnover reduced rapidly, bone density increased, and renal function remained normal. Nevertheless, MCTO-related osteolysis and joint immobility progressed during denosumab treatment. Symptomatic hypercalcemia and protracted hypercalciuria occurred during weaning and after discontinuation of denosumab and required treatment with zoledronate. When expressed in vitro, the c.206C>T; p.Ser69Leu variant had increased protein stability and produced greater transactivation of a luciferase reporter under the control of the PTH gene promoter than did wild-type MafB. Based on our experience and that of others, denosumab does not appear to be efficacious for MCTO and carries a high risk of rebound hypercalcemia and/or hypercalciuria after drug discontinuation. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Melissa A. Lerman
- Division of RheumatologyThe Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Michael Francavilla
- Department of RadiologyWhiddon College of Medicine, University of South AlabamaMobileALUSA
| | - Lindsay Waqar‐Cowles
- Division of RheumatologyThe Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Michael A. Levine
- Division of Endocrinology and Diabetes and Center for Bone HealthThe Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
5
|
Ma NS, Mumm S, Takahashi S, Levine MA. Multicentric Carpotarsal Osteolysis: a Contemporary Perspective on the Unique Skeletal Phenotype. Curr Osteoporos Rep 2023; 21:85-94. [PMID: 36477366 PMCID: PMC10393442 DOI: 10.1007/s11914-022-00762-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Multicentric carpotarsal osteolysis (MCTO) is an ultra-rare disorder characterized by osteolysis of the carpal and tarsal bones, subtle craniofacial deformities, and nephropathy. The molecular pathways underlying the pathophysiology are not well understood. RECENT FINDINGS MCTO is caused by heterozygous mutations in MAFB, which encodes the widely expressed transcription factor MafB. All MAFB mutations in patients with MCTO result in replacement of amino acids that cluster in a phosphorylation region of the MafB transactivation domain and account for a presumed gain-of-function for the variant protein. Since 2012, fewer than 60 patients with MCTO have been described with 20 missense mutations in MAFB. The clinical presentations are variable, and a genotype-phenotype correlation is lacking. Osteolysis, via excessive osteoclast activity, has been regarded as the primary mechanism, although anti-resorptive agents demonstrate little therapeutic benefit. This paper appraises current perspectives of MafB protein action, inflammation, and dysfunctional bone formation on the pathogenesis of the skeletal phenotype in MCTO. More research is needed to understand the pathogenesis of MCTO to develop rational therapies.
Collapse
Affiliation(s)
- Nina S Ma
- Section of Pediatric Endocrinology, Children's Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, 13123 E. 16th Ave, B265, Aurora, CO, 80045, USA.
| | - S Mumm
- Division of Bone and Mineral Diseases, Washington University School of Medicine and Center for Metabolic Bone Disease and Molecular Research, Shriners Children's, St. Louis, MO, USA
| | - S Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - M A Levine
- Center for Bone Health and Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Morito N, Usui T, Ishibashi S, Yamagata K. Podocyte-specific Transcription Factors: Could MafB Become a Therapeutic Target for Kidney Disease? Intern Med 2023; 62:11-19. [PMID: 35249929 PMCID: PMC9876710 DOI: 10.2169/internalmedicine.9336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The increasing number of patients with chronic kidney disease (CKD) is being recognized as an emerging global health problem. Recently, it has become clear that injury and loss of glomerular visceral epithelial cells, known as podocytes, is a common early event in many forms of CKD. Podocytes are highly specialized epithelial cells that cover the outer layer of the glomerular basement membrane. They serve as the final barrier to urinary protein loss through the formation and maintenance of specialized foot-processes and an interposed slit-diaphragm. We previously reported that the transcription factor MafB regulates the podocyte slit diaphragm protein production and transcription factor Tcf21. We showed that the forced expression of MafB was able to prevent CKD. In this review, we discuss recent advances and offer an updated overview of the functions of podocyte-specific transcription factors in kidney biology, aiming to present new perspectives on the progression of CKD and respective therapeutic strategies.
Collapse
Affiliation(s)
- Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Toshiaki Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Shun Ishibashi
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
7
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|