1
|
Mohammadi S, Al-Harrasi A. Macrophage modulation with dipeptidyl peptidase-4 inhibitors: A new frontier for treating diabetic cardiomyopathy? World J Diabetes 2024; 15:1847-1852. [PMID: 39280186 PMCID: PMC11372644 DOI: 10.4239/wjd.v15.i9.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 08/27/2024] Open
Abstract
This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy (DCM) treatment by dipeptidyl peptidase-4 (DPP-4) inhibitors. Zhang et al studied teneligliptin, a DPP-4 inhibitor used for diabetes management, and its potential cardioprotective effects in a diabetic mouse model. They suggested teneligliptin administration may reverse established markers of DCM, including cardiac hypertrophy and compromised function. It also inhibited the NLRP3 inflammasome and reduced inflammatory cytokine production in diabetic mice. Macrophages play crucial roles in DCM pathogenesis. Chronic hyperglycemia disturbs the balance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, favoring a pro-inflammatory state contributing to heart damage. Here, we highlight the potential of DPP-4 inhibitors to modulate macrophage function and promote an anti-inflammatory environment. These compounds may achieve this by elevating glucagon-like peptide-1 levels and potentially inhibiting the NLRP3 inflammasome. Further studies on teneligliptin in combination with other therapies targeting different aspects of DCM could be suggested for developing more effective treatment strategies to improve cardiovascular health in diabetic patients.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
2
|
He J, Zhao D, Peng B, Wang X, Wang S, Zhao X, Xu P, Geng B, Xia Y. A novel mechanism of Vildagliptin in regulating bone metabolism and mitigating osteoporosis. Int Immunopharmacol 2024; 130:111671. [PMID: 38367467 DOI: 10.1016/j.intimp.2024.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis has become a global social problem with the tendency toward the aging population. The challenge in managing osteoporosis is to develop new anti-osteoporosis drugs that target bone anabolism. The purpose of this study was to uncover the novel mechanism of Vildagliptin on bone metabolism. We revealed that Vildagliptin significantly promoted osteogenic differentiation of precursor osteoblasts and bone marrow mesenchymal stem cells (BMSCs). At the same time, it significantly enhanced the polarization of RAW264.7 macrophages to the M2 type and the secretion of osteogenic factors BMP2 and TGF-β1. This was confirmed by the increased osteogenic differentiation observed in the osteoblast-RAW264.7 co-culture system. Moreover, Vildagliptin significantly enhanced the transformation of BMSCs into the osteogenic morphology in the osteoblast-BMSC co-culture system. Finally, Vildagliptin also inhibited osteoclastic differentiation of RAW 264.7 cells. The potential mechanism underlying these effects involved targeting the GAS6/AXL/ERK5 pathway. In the in vivo study, Vildagliptin significantly alleviated postmenopausal osteoporosis in ovariectomized mice. These findings represent the first comprehensive revelation of the regulatory effect of Vildagliptin on bone metabolism. Specifically, Vildagliptin demonstrates the ability to promote bone anabolism and inhibit bone resorption by simultaneously targeting osteoblasts, BMSCs, and osteoclasts. The bone-protective effects of Vildagliptin were further confirmed in a postmenopausal osteoporosis model. The clinical significance of this study lies in laying a theoretical foundation for bone protection therapy in type-2 diabetes patients with compromised bone conditions or postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jinwen He
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 715004, China
| | - Dacheng Zhao
- Department of Painology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Bo Peng
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xingwen Wang
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Shenghong Wang
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaobing Zhao
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 715004, China.
| | - Bin Geng
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China.
| | - Yayi Xia
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China.
| |
Collapse
|
3
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
4
|
Yu H, Cheng W, Ding C, Li Z, Ouyang W, Liu Q, Wu Z, Jing J. A Meaningful Attempt: Applying Dielectric Barrier Discharge Plasma to Induce Polarization of Macrophages. Bioelectromagnetics 2023. [PMID: 37186397 DOI: 10.1002/bem.22446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Macrophage polarization plays an important role in many macrophage-related diseases. This study was designed to preliminarily explore the effects of dielectric barrier discharge (DBD) plasma on the polarization direction and cell activity of macrophages with different phenotypes (ie, M0, M1, and M2). The M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker cluster of differentiation 206 (CD206) were detected by western blot (WB). The effects of DBD plasma on macrophage viability were analyzed by using a cell counting kit-8 detection kit. M0, M1, and M2 macrophages exhibited a decrease in iNOS expression and an increase in CD206 expression after the DBD plasma intervention. Additionally, the decrease in macrophage viability remained non-significant after initiating the intervention. DBD plasma can promote the transformation of M0 and M1 macrophages to M2 macrophages, and can further enhance the expression of the M2 macrophage phenotype marker CD206. Our study not only demonstrates the potential therapeutic value of DBD plasma for macrophage-related diseases, but it also provides a new direction for research to improve the treatment of macrophage-related diseases. © 2023 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wendan Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Ziyu Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenchong Ouyang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Amin SN, Sakr HI, El Gazzar WB, Shaltout SA, Ghaith HS, Elberry DA. Combined saline and vildagliptin induced M2 macrophage polarization in hepatic injury induced by acute kidney injury. PeerJ 2023; 11:e14724. [PMID: 36815993 PMCID: PMC9933746 DOI: 10.7717/peerj.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Acute kidney injury (AKI) is a prevalent medical condition accompanied by mutual affection of other organs, including the liver resulting in complicated multiorgan malfunction. Macrophages play a vital role during tissue injury and healing; they are categorized into "classically activated macrophages" (M1) and "alternatively activated macrophages" (M2). The present study investigated and compared the conventional fluid therapy vs Dipeptidyl peptidase 4 inhibitor (DPP-4i) vildagliptin on the liver injury induced by AKI and evaluated the possible molecular mechanisms. Thirty rats comprised five groups (n = 6 rats/group): control, AKI, AKI+saline (received 1.5 mL of normal saline subcutaneous injection), AKI+vildagliptin (treated with oral vildagliptin 10 mg/kg), AKI+saline+vildagliptin. AKI was induced by intramuscular (i.m) injection of 50% glycerol (5 ml/kg). At the end of the work, we collected serum and liver samples for measurements of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrotic factor-α (TNF-α), and interleukin-10 (IL-10). Liver samples were processed for assessment of inducible nitric oxide synthase (iNOS) as a marker for M1, arginase 1 (Arg-1) as an M2 marker, c-fos, c-Jun, mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and high-mobility-group-box1 (HMGB1) protein. The difference was insignificant regarding the relative expression of AP-1, c-Jun, c-fos, MAPK, and HMGB between the AKI+saline group and the AKI+Vildagliptin group. The difference between the same two groups concerning the hepatic content of the M1 marker (iNOS) and the M2 marker Arg-1 was insignificant. However, combined therapy produced more pronounced changes in these markers, as the difference in their relative expression between the AKI+saline+Vildagliptin group and both the AKI+saline group and the AKI+Vildagliptin group was significant. Accordingly, we suggest that the combined saline and vildagliptin hepatoprotective effect involves the downregulation of the MAPK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Shaimaa N. Amin
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt,Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Walaa B. El Gazzar
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sherif A. Shaltout
- Department of Pharmacology, Public health, and Clinical Skills, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Dalia A. Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Wang L, Lu Q, Gao W, Yu S. Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 2021; 284:119914. [PMID: 34453949 DOI: 10.1016/j.lfs.2021.119914] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Macrophages, an important part of human immune system, possess a high plasticity and heterogeneity (macrophage polarization) as classically activated macrophages (M1) and alternatively activated macrophages (M2), which exert pro-inflammatory/anti-tumor and anti-inflammatory/pro-tumor effects, respectively. Thus, drug development in induction of macrophage polarization could be used to treat different human diseases. This review summarizes the recent advancement on modulation of macrophage polarization and its related molecular mechanisms induced by a number of agents. Research on the anti-inflammatory drugs to regulate the macrophage polarization accounts for a large proportion in the field and types of diseases investigated could include atherosclerosis, enteritis, nephritis, and the nervous system and skeletal diseases, while study of the anti-tumor agents to modify macrophage polarization is a novel area of research. Future study of the molecular mechanisms by which the different agents regulate the macrophage polarization could lead to an effective control of various human diseases, including inflammation and cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Lu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wenwen Gao
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Qilu Hospital of Shandong University, Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Zang X, Cheng M, Zhang X, Chen X. Targeting macrophages using nanoparticles: a potential therapeutic strategy for atherosclerosis. J Mater Chem B 2021; 9:3284-3294. [PMID: 33881414 DOI: 10.1039/d0tb02956d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is one of the leading causes of vascular diseases, with high morbidity and mortality worldwide. Macrophages play a critical role in the development and local inflammatory responses of atherosclerosis, contributing to plaque rupture and thrombosis. Considering their central roles, macrophages have gained considerable attention as a therapeutic target to attenuate atherosclerotic progression and stabilize existing plaques. Nanoparticle-based delivery systems further provide possibilities to selectively and effectively deliver therapeutic agents into intraplaque macrophages. Although challenges are numerous and clinical application is still distant, the design and development of macrophage-targeting nanoparticles will generate new knowledge and experiences to improve therapeutic outcomes and minimize toxicity. Hence, the review aims to discuss various strategies for macrophage modulation and the development and evaluation of macrophage targeting nanomedicines for anti-atherosclerosis.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, P. R. China.
| | | | | | | |
Collapse
|
8
|
Therapies for the Treatment of Cardiovascular Disease Associated with Type 2 Diabetes and Dyslipidemia. Int J Mol Sci 2021; 22:ijms22020660. [PMID: 33440821 PMCID: PMC7826980 DOI: 10.3390/ijms22020660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is the clinical manifestation of the atherosclerosis. Elevated LDL-cholesterol levels are the first line of therapy but the increasing prevalence in type 2 diabetes mellitus (T2DM) has positioned the cardiometabolic risk as the most relevant parameter for treatment. Therefore, the control of this risk, characterized by dyslipidemia, hypertension, obesity, and insulin resistance, has become a major goal in many experimental and clinical studies in the context of CVD. In the present review, we summarized experimental studies and clinical trials of recent anti-diabetic and lipid-lowering therapies targeted to reduce CVD. Specifically, incretin-based therapies, sodium-glucose co-transporter 2 inhibitors, and proprotein convertase subtilisin kexin 9 inactivating therapies are described. Moreover, the novel molecular mechanisms explaining the CVD protection of the drugs reviewed here indicate major effects on vascular cells, inflammatory cells, and cardiomyocytes, beyond their expected anti-diabetic and lipid-lowering control. The revealed key mechanism is a prevention of acute cardiovascular events by restraining atherosclerosis at early stages, with decreased leukocyte adhesion, recruitment, and foam cell formation, and increased plaque stability and diminished necrotic core in advanced plaques. These emergent cardiometabolic therapies have a promising future to reduce CVD burden.
Collapse
|
9
|
Alduaig KN, Alzahrani OK, Bilal AA, Hutaylah ISA, Alhelal SH, Almuslim SM, Aljumah DJ, Muzaffar KH, Aseeri KI, Hrooby RH. The Role of DPP-4 Inhibitors in Cardiovascular Protection among Type-2 Diabetic Patients; Literature Review. ARCHIVES OF PHARMACY PRACTICE 2021. [DOI: 10.51847/qksetzesuv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Wang H, Li Y, Zhang X, Xu Z, Zhou J, Shang W. DPP-4 Inhibitor Linagliptin Ameliorates Oxidized LDL-Induced THP-1 Macrophage Foam Cell Formation and Inflammation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3929-3940. [PMID: 33061298 PMCID: PMC7524190 DOI: 10.2147/dddt.s249846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Introduction Atherosclerosis is one of the major causes of cardiovascular diseases. Lipid uptake and accumulation in macrophages play a major role in atherosclerotic plaque formation from its initiation to advanced atheroma formation. The dipeptidyl peptidase-4 (DPP-4) inhibitor Linagliptin is commonly used to lower blood glucose in type 2 diabetes patients. Recent studies report that Linagliptin has cardiovascular protective and anti-inflammatory effects. Methods THP-1 macrophage cells were treated with 100 nM PMA for 72 hour to induce foam cell formation. The differentiated cells were exposed to 100 μg/mL ox-LDL in the presence or absence of the DPP-4 inhibitor Linagliptin. The expression levels of DPP-4 and inflammatory cytokines were detected by RT-PCR, ELISA, and Western blot experiments. The cellular ROS level was measured by staining the cells with the fluorescent probe DCFH-DA. The separation of lipoprotein fractions was achieved by high-performance liquid chromatography (HPLC). The cells were labeled with fluorescent-labeled cholesterol to measure cholesterol efflux, and lipid droplets were revealed by Nile red staining. Results The presence of Linagliptin significantly reduced ox-LDL-induced cytokine production (IL-1β and IL-6) and ROS production. Linagliptin ameliorated ox-LDL-induced lipid accumulation and impaired cholesterol efflux in macrophages. Mechanistically, this study showed that Linagliptin mitigated ox-LDL-induced expression of the scavenger receptors CD36 and LOX-1, but not SRA. Furthermore, Linagliptin increased the expression of the cholesterol transporter ABCG1, but not ABCA1. Conclusion Linagliptin possesses a potent inhibitory effect on THP-1 macrophage-derived foam cell formation in response to ox-LDL. This effect could be mediated through a decrease in the expression of CD36 and LOX-1 on macrophages and an increase in the expression of the cholesterol transporter ABCG1. This study indicates that the DPP-4 inhibitor Linagliptin plays a critical role in preventing foam cell formation in vitro. However, future research using an atherosclerotic animal model is necessary to determine its effectiveness and to prove its potential implication in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Endocrinology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Yue Li
- Department of Cardiology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Xiaoliang Zhang
- Department of Cardiology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Zhonglin Xu
- Department of Cardiology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Jianzhong Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400700, People's Republic of China
| | - Wei Shang
- Department of Cardiology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| |
Collapse
|