1
|
Zhang P, Liu H, Yu Y, Peng S, Zeng A, Song L. Terpenoids mediated cell apoptotsis in cervical cancer: Mechanisms, advances and prospects. Fitoterapia 2025; 180:106323. [PMID: 39631509 DOI: 10.1016/j.fitote.2024.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cervical cancer remains one of the most common malignancies among women globally, causing hundreds of thousands of deaths annually. Despite widespread vaccination and screening programs, the incidence of cervical cancer remains high in developing countries. OBJECTIVE This review aims to systematically summarize the existing terpenoids effective in preventing cervical cancer, elucidate their potential mechanisms in the prophylaxis and treatment of cervical cancer, and assess the limitations of current studies. RESULTS Studies have shown that terpenoids can decrease the incidence of cervical cancer and promote apoptosis of cancer cells through various signaling pathways, including the PI3K/AKT pathway, the endoplasmic reticulum stress (ERS) pathway, and the mitochondria- and caspase-dependent cell death pathways. Furthermore, some terpenoids have been found to enhance the sensitivity to chemotherapy drugs, thus improving patients' quality of life. CONCLUSION Terpenoids play a significant role in inhibiting the progression of cervical cancer. However, due to their diversity and complex mechanisms of action, further research is necessary to investigate their specific targets and bioactivities to advance their clinical trials and applications.
Collapse
Affiliation(s)
- Peng Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Hong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Yuan Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Shiyang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
2
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Banerjee S, Banerjee S, Bishayee A, Da Silva MN, Sukocheva OA, Tse E, Casarcia N, Bishayee A. Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155858. [PMID: 39053249 DOI: 10.1016/j.phymed.2024.155858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Betulinic acid (BA), which is a pentacyclic triterpenoid found in the bark of plane, birch, and eucalyptus trees, has emerged as a compound of significant interest in scientific research due to its potential therapeutic applications. BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities. Although numerous research studies have explored the potential anticancer effects of BA, there is a noticeable gap in the literature, highlighting the need for a more up-to-date and comprehensive evaluation of BA's anticancer potential. PURPOSE The aim of this work is to critically assess the reported cellular and molecular mechanisms underlying the cancer preventive and therapeutic effects of BA. METHODS Relevant research on the inhibitory effects of BA against cancerous cells was searched using Science Direct, Scopus, Web of Science, and PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS The anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling. Emerging evidence also underscores the combined anticancer effects of BA with other natural bioactive compounds or approved drugs. Notably, several novel BA nanoformulations have been found to exhibit encouraging antineoplastic activities. CONCLUSION BA, whether used alone or in combination, or as a form of nanoformulation, shows significant potential for cancer prevention and treatment. Nevertheless, further detailed studies are necessary to confirm the therapeutic effectiveness of this natural compound.
Collapse
Affiliation(s)
- Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | | | - Milton Nascimento Da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
4
|
Upadhyay A, Joshi V. Proteasome Activators and Ageing: Restoring Proteostasis Using Small Molecules. Subcell Biochem 2024; 107:21-41. [PMID: 39693018 DOI: 10.1007/978-3-031-66768-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is an inevitable phenomenon that remains under control of a plethora of signalling pathways and regulatory mechanisms. Slowing of cellular homeostasis and repair pathways, declining genomic and proteomic integrity, and deficient stress regulatory machinery may cause accumulating damage triggering initiation of pathways leading to ageing-associated changes. Multiple genetic studies in small laboratory organisms focused on the manipulation of proteasomal activities have shown promising results in delaying the age-related decline and improving the lifespan. In addition, a number of studies indicate a prominent role of small molecule-based proteasome activators showing positive results in ameliorating the stress conditions, protecting degenerating neurons, restoring cognitive functions, and extending life span of organisms. In this chapter, we provide a brief overview of the multi-enzyme proteasome complex, its structure, subunit composition and variety of cellular functions. We also highlight the strategies applied in the past to modulate the protein degradation efficiency of proteasome and their impact on rebalancing the proteostasis defects. Finally, we provide a descriptive account of proteasome activation mechanisms and small molecule-based strategies to improve the overall organismal health and delay the development of age-associated pathologies.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, India.
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
5
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
SESN2 Knockdown Increases Betulinic Acid-Induced Radiosensitivity of Hypoxic Breast Cancer Cells. Cells 2022; 12:cells12010177. [PMID: 36611970 PMCID: PMC9818433 DOI: 10.3390/cells12010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Betulinic acid (BA) is a natural compound well known for its anti-inflammatory, anti-viral, anti-bacterial, anti-malarial effects and anti-tumor properties. Its enhanced cytotoxicity in tumor cells and induction of cell death in various cancer entities qualifies BA as an interesting candidate for novel treatment concepts. Our analyses showed enhanced cytotoxicity and radiosensitization under hypoxic conditions in human breast cancer cells. So far, the underlying mechanisms are unknown. Therefore, we investigated the BA-treated human breast cancer cell lines MDA-MB-231 and MCF-7 under normoxic and hypoxic conditions based on microarray technology. Hypoxia and BA regulated a variety of genes in both breast cancer cell lines. KEGG pathway analysis identified an enrichment of the p53 pathway in MCF-7 cells (wtp53) under hypoxia. In MDA-MB-231 cells (mtp53) an additional BA incubation was required to activate the p53 signaling pathway. Fourteen down-regulated and up-regulated genes of the p53 pathway were selected for further validation via qRT-PCR in a panel of five breast cancer cell lines. The stress-induced gene Sestrin-2 (SESN2) was identified as one of the most strongly up-regulated genes after BA treatment. Knockdown of SESN2 enhanced BA-induced ROS production, DNA damage, radiosensitivity and reduced autophagy in breast cancer cells. Our results identified SESN2 as an important target to enhance the radiobiological and anti-tumor effects of BA on breast cancer cells.
Collapse
|
7
|
Farooqi AA, Turgambayeva A, Tashenova G, Tulebayeva A, Bazarbayeva A, Kapanova G, Abzaliyeva S. Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010067. [PMID: 36615262 PMCID: PMC9822120 DOI: 10.3390/molecules28010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
The pursual of novel anticancer molecules from natural sources has gained worthwhile appreciation, and a significant fraction of conceptual knowledge has revolutionized our understanding about heterogeneous nature of cancer. Betulinic acid has fascinated interdisciplinary researchers due to its tremendous pharmacological properties. Ground-breaking discoveries have unraveled previously unprecedented empirical proof-of-concept about momentous chemopreventive role of betulinic acid against carcinogenesis and metastasis. Deregulation of cell signaling pathways has been reported to play a linchpin role in cancer progression and colonization of metastatically competent cancer cells to the distant organs for the development of secondary tumors. Importantly, betulinic acid has demonstrated unique properties to mechanistically modulate oncogenic transduction cascades. In this mini-review, we have attempted to provide a sophisticated compendium of regulatory role of betulinic acid in cancer chemoprevention. We have partitioned this multi-component review into different sections in which we summarized landmark research-works which highlighted betulinic acid mediated regulation of JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and ubiquitination pathways in the inhibition of cancer. In parallel, betulinic acid mediated regulation of signaling cascades and non-coding RNAs will be critically analyzed in cell culture and animal model studies. Better comprehension of the pharmaceutical features of betulinic acid and mapping of the existing knowledge gaps will be valuable in the translatability of preclinical studies into rationally designed clinical trials.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
- Correspondence:
| | - Assiya Turgambayeva
- Department of Public Health and Management, NJSC “Astana Medical University”, Astana 010000, Kazakhstan
| | - Gulnara Tashenova
- Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Aigul Tulebayeva
- Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Aigul Bazarbayeva
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Gulnara Kapanova
- Scientific Center of Anti-Infectious Drugs, 75 al-Faraby Ave, Almaty 050040, Kazakhstan
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Symbat Abzaliyeva
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan
| |
Collapse
|
8
|
Aswathy M, Vijayan A, Daimary UD, Girisa S, Radhakrishnan KV, Kunnumakkara AB. Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. J Biochem Mol Toxicol 2022; 36:e23206. [PMID: 36124371 DOI: 10.1002/jbt.23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Uzini D Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Kokkuvayil V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
9
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
10
|
Curcumenol Targeting YWHAG Inhibits the Pentose Phosphate Pathway and Enhances Antitumor Effects of Cisplatin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3988916. [PMID: 35795276 PMCID: PMC9251105 DOI: 10.1155/2022/3988916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/26/2022]
Abstract
Objective Cervical cancer is a common cancer in women. The drug resistance of chemotherapeutic agents has always been an urgent problem to be solved in clinics. The purpose of this study was to determine the role of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma polypeptide (YWHAG) in cervical cancer and explore the effect of Curcuma on cervical cancer and its possible mechanism. Methods YWHAG expression in cervical cancer was confirmed using The Cancer Genome Atlas (TCGA) database. Then, the effects of YWHAG on the proliferation and invasion of HeLa and C33A cervical cancer cells were detected by the cell counting kit-8 (CCK-8) and transwell assay. The relationship between YWHAG and the pentose phosphorylation pathway was further studied. CCK-8, Edu, and quantitative real-time polymerase chain reaction were used to confirm that Curcuma inhibited the sensitivity of YWHAG to cisplatin chemotherapy and to detect the expression of apoptosis-related proteins. Results YWHAG was highly expressed in cervical cancer and was associated with poor prognosis. The proliferation and invasion abilities of HeLa and C33A cells decreased after YWHAG knockout. The TCGA database of cervical cancer showed a positive correlation between YWHAG and hypoxia-inducible factor-1 subunit alpha (HIF-1α) expression. YWHAG expression increased with HIF-1α overexpression. YWHAG knockdown reduced the protein expression in the pentose phosphorylation pathway. Curcumenol inhibited YWHAG expression. Compared with cisplatin alone, curcumenol combined with cisplatin can reduce cell proliferation and invasion and reduce matrix metalloproteinase (MMP) 2 and MMP9 expression. It can also increase apoptosis, decrease B cell lymphoma 2 (Bcl-2) expression, and increase the expression of Bcl-2 antagonist X, caspase-3, and polyadenosine diphosphate-ribose polymerase. Conclusion YWHAG can interact with HIF-1α to affect the proliferation and invasion of cervical cancer cells. YWHAG knockout can reduce the expression of pentose phosphorylation pathway-related proteins. Curcumenol can enhance cisplatin to inhibit cancer cell proliferation, migration, and invasion and promote tumor cell apoptosis. The combination of drugs may promote the apoptosis of cervical cancer cells through the YWHAG pathway.
Collapse
|
11
|
Zhan B, Dong X, Yuan Y, Gong Z, Li B. hZIP1 Inhibits Progression of Clear Cell Renal Cell Carcinoma by Suppressing NF-kB/HIF-1α Pathway. Front Oncol 2021; 11:759818. [PMID: 34926261 PMCID: PMC8674186 DOI: 10.3389/fonc.2021.759818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Accumulating literature has suggested that hZIP1 and HIF-1α play vital roles in the tumor process of clear cell renal cell carcinoma (ccRCC). However, the functional roles of hZIP1 and HIF-1α in ccRCC remain largely unknown. Methods HIF-1α protein level was evaluated by a western blot in ccRCC tissues and cell lines. ccRCC cell lines were transfected with HIF-1α-siRNA to downregulate the expression level of HIF-1α. Then the proliferative, migratory and invasive abilities of ccRCC cells in vitro were detected by real-time cell analysis (RTCA) assay, wound healing assay and transwell assay, respectively. The role of HIF-1α in vivo was explored by tumor implantation in nude mice. Then the effect on glycolysis‐related proteins was performed by western blot after hZIP1 knockdown (overexpression) or HIF-1α knockdown. The effect on NF‐kB pathway was detected after hZIP1 overexpression. Results HIF-1α was markedly downregulated in ccRCC tissues compared with normal areas. But HIF-1α presented almost no expression in HK-2 and ACHN cells. Immunofluorescence indicated HIF-1α and PDK1 expression in both the cytoplasm and nucleus in ccRCC cells. Downregulation of HIF-1α suppressed ccRCC cell proliferation, migration, and invasion and resulted in smaller implanted tumors in nude mice. Furthermore, hZIP1 knockdown elevated HIF-1α protein levels and PDK1 protein levels in ccRCC cells. Interestingly, a sharp downregulated expression of HIF-1α was observed after hZIP1 overexpression in OSRC-2 and 786-O cells, which resulted from a downtrend of NF-kB1 moving into the cell nucleus. Conclusion Our work has vital implications that hZIP1 suppresses ccRCC progression by inhibiting NF-kB/HIF-1α pathway.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Yulin Yuan
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zheng Gong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Bohan Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Han TH, Park MK, Nakamura H, Ban HS. Capsaicin inhibits HIF-1α accumulation through suppression of mitochondrial respiration in lung cancer cells. Biomed Pharmacother 2021; 146:112500. [PMID: 34891118 DOI: 10.1016/j.biopha.2021.112500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia inducible factor (HIF)-1α is an important transcription factor regulating cancer metabolism in hypoxic environment. Capsaicin is known to inhibit hypoxia-induced HIF activity in lung cancer. Hence, in this study we tried to elucidate its inhibitory mechanism of action. In lung cancer cells, including H1299, H23, A549, and H2009 cells, capsaicin inhibited cell growth and HIF activation. Under hypoxic conditions, capsaicin reduced the accumulation of HIF-1α protein and the expression of its target genes, including pyruvate dehydrogenase kinase 1 (PDK1) and glucose transporter 1 (GLUT1), with no effect on overall HIF-1α mRNA levels in the H1299 cells. In addition, capsaicin increased intracellular oxygen levels by suppressing mitochondrial respiration, resulting in a reduction of HIF-1α accumulation. Furthermore, mitochondrial ATP production was reduced by capsaicin through the inhibition of mitochondrial respiration in the H1299, H23, A549, and H2009 cells. These results indicate that capsaicin potentially exhibits anticancer therapeutic effects in lung cancer under hypoxic conditions.
Collapse
Affiliation(s)
- Tae-Hee Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Min Kyung Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, South Korea.
| |
Collapse
|
13
|
Tuli HS, Sak K, Gupta DS, Kaur G, Aggarwal D, Chaturvedi Parashar N, Choudhary R, Yerer MB, Kaur J, Kumar M, Garg VK, Sethi G. Anti-Inflammatory and Anticancer Properties of Birch Bark-Derived Betulin: Recent Developments. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122663. [PMID: 34961132 PMCID: PMC8705846 DOI: 10.3390/plants10122663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Birch tree bark-derived betulin has attracted scientific interest already for several centuries, being one of the first natural products identified from plants. However, the cellular events regulated by betulin and precise molecular mechanisms under these processes have been begun to be understood only recently. Today, we know that betulin can exert important anticancer activities through modulation of diverse cellular pathways. In this review article, betulin-regulated molecular signaling is unraveled and presented with a special focus on its participation in anti-inflammatory processes, especially by modulating nuclear factor-κB (NF-κB), prostaglandin/COX, and nuclear factor erythroid2-related factor 2 (Nrf2)-mediated cascades. By regulating these diverse pathways, betulin can not only affect the development and progression of different cancers, but also enhance the antitumor action of traditional therapeutic modalities. It is expected that by overcoming the low bioavailability of betulin by encapsulating it into nanocarriers, this promising natural compound may provide novel possibilities for targeting inflammation-related cancers.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
- Correspondence: (H.S.T.); (G.S.)
| | | | - Dhruv Sanjay Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Jagjit Kaur
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India;
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (H.S.T.); (G.S.)
| |
Collapse
|
14
|
Potential Mechanisms of Plant-Derived Natural Products in the Treatment of Cervical Cancer. Biomolecules 2021; 11:biom11101539. [PMID: 34680171 PMCID: PMC8533981 DOI: 10.3390/biom11101539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the second most common gynecological malignancy globally; it seriously endangers women’s health because of its high morbidity and mortality. Conventional treatments are prone to drug resistance, recurrence and metastasis. Therefore, there is an urgent need to develop new drugs with high efficacy and low side effects to prevent and treat cervical cancer. In recent years, plant-derived natural products have been evaluated as potential anticancer drugs that preferentially kill tumor cells without severe adverse effects. A growing number of studies have shown that natural products can achieve practical anti-cervical-cancer effects through multiple mechanisms, including inhibition of tumor-cell proliferation, induction of apoptosis, suppression of angiogenesis and telomerase activity, enhancement of immunity and reversal of multidrug resistance. This paper reviews the therapeutic effects and mechanisms of plant-derived natural products on cervical cancer and provides references for developing anti-cervical-cancer drugs with high efficacy and low side effects.
Collapse
|
15
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
16
|
Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother 2021; 142:111990. [PMID: 34388528 DOI: 10.1016/j.biopha.2021.111990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound that can be obtained by separation, chemical synthesis and biotransformation from birch. BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress; the regulation of specificity protein transcription factors, and the inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways. In addition, BA can increase the sensitivity of cancer cells to other chemotherapy drugs. Recent studies have shown that BA plays an anticancer role in several kinds of tumour diseases. In this article, the anticancer mechanism of BA and its application in the treatment of tumour diseases are reviewed.
Collapse
|
17
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Comprehensive Understanding of the Anticancer Mechanisms of FDY2004 Against Cervical Cancer Based on Network Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herbal drugs are continuously being developed and used as effective therapeutics for various cancers, such as cervical cancer (CC); however, their mechanisms of action at a systemic level have not been explored fully. To study such mechanisms, we conducted a network pharmacological investigation of the anti-CC mechanisms of FDY2004, an herbal drug consisting of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma. We found that FDY2004 inhibited the viability of human CC cells. By performing pharmacokinetic evaluation and network analysis of the phytochemical components of FDY2004, we identified 29 bioactive components and their 116 CC-associated pharmacological targets. Gene ontology enrichment analysis showed that the modulation of cellular functions, such as apoptosis, growth, proliferation, and survival, might be mediated through the FDY2004 targets. The therapeutic targets were also key components of CC-associated oncogenic and tumor-suppressive pathways, including PI3K-Akt, human papillomavirus infection, IL-17, MAPK, TNF, focal adhesion, and viral carcinogenesis pathways. In conclusion, our data present a comprehensive insight for the mechanisms of the anti-CC properties of FDY2004.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
18
|
Zhou T, Lin W, Lin S, Zhong Z, Luo Y, Lin Z, Xie W, Shen W, Hong K. Association of Nuclear Receptor Coactivators with Hypoxia-Inducible Factor-1 α in the Serum of Patients with Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1587915. [PMID: 32884936 PMCID: PMC7455818 DOI: 10.1155/2020/1587915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Nuclear receptor coactivators (NCOAs), consisting of coactivators and corepressors, dramatically enhance the transcriptional activity of nuclear receptors. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that plays a major role under hypoxic conditions. This study was performed with the focus on the association of NCOAs with HIF-1α in the serum of chronic kidney disease (CKD) patients. Sixty patients with stage 5 CKD and 30 healthy controls from The Second Affiliated Hospital of Shantou University Medical College, between March 21, 2019, and October 30, 2019, were recruited in this prospective cohort study. We analyzed the serum levels of NCOAs (NCOA1, NCOA2, and NCOA3), HIF-1α, vascular endothelial growth factor (VEGF), etc. and assessed whether there was any relationship between these parameters and CKD disease. We found that circulating NCOA1 was positively associated with circulating NCOA2, NCOA3, and HIF-1α. A positive correlation was also observed between NCOA2 and NCOA1, NCOA3, HIF-1α, and VEGF. Furthermore, statistically significant correlations between NCOA3 and NCOA1, NCOA2, and HIF-1α were observed. The serum levels of VEGF in the CKD group were higher than those of the healthy control group. Circulating NCOA1 and circulating NCOA2 were negatively associated with procalcitonin. In conclusion, there was an association between circulating NCOA1, NCOA2, NCOA3, and circulating HIF-1α, and circulating VEGF was a risk factor for CKD disease. However, more studies should be performed to confirm this hypothesis.
Collapse
Affiliation(s)
- Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Wenshan Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Shujun Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Zhiqing Zhong
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Yuanyuan Luo
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Zhijun Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Weiji Xie
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Weitao Shen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Kai Hong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| |
Collapse
|