1
|
Shi X, Sheng Y, Fei H, Wei B, Zhang Z, Xia X, Mao C, Si X. Combined transcriptome and proteome analysis reveals MSN and ARFIP2 as biomarkers for trastuzumab resistance of breast cancer. Breast Cancer Res Treat 2024; 207:187-201. [PMID: 38750271 DOI: 10.1007/s10549-024-07355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE HER2-positive breast cancer (BC) accounts for 20-30% of all BC subtypes and is linked to poor prognosis. Trastuzumab (Tz), a humanized anti-HER2 monoclonal antibody, is a first-line treatment for HER2-positive breast cancer which faces resistance challenges. This study aimed to identify the biomarkers driving trastuzumab resistance. METHODS Differential expression analysis of genes and proteins between trastuzumab-sensitive (TS) and trastuzumab-resistant (TR) cells was conducted using RNA-seq and iTRAQ. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used to study their functions. The prognostic significance and protein levels of ARFIP2 and MSN were evaluated using online tools and immunohistochemistry. Sensitivity of MSN and ARFIP2 to other therapies was assessed using public pharmacogenomics databases and the R language. RESULTS Five genes were up-regulated, and nine genes were down-regulated in TR cells at both transcriptional and protein levels. Low ARFIP2 and high MSN expression linked to poor BC prognosis. MSN increased and ARFIP2 decreased in TR patients, correlating with shorter OS. MSN negatively impacted fulvestrant and immunotherapy sensitivity, while ARFIP2 had a positive impact. CONCLUSION Our findings suggest that MSN and ARFIP2 could serve as promising biomarkers for predicting response to Tz, offering valuable insights for future research in the identification of diagnostic and therapeutic targets for BC patients with Tz resistance.
Collapse
Affiliation(s)
- Xiao Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuan Sheng
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211116, China
| | - Haoran Fei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Bangbang Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhenyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyu Xia
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
3
|
Xia T, Ye F, Zhao W, Min P, Qi C, Wang Q, Zhao M, Zhang Y, Du J. Comprehensive Analysis of MICALL2 Reveals Its Potential Roles in EGFR Stabilization and Ovarian Cancer Cell Invasion. Int J Mol Sci 2023; 25:518. [PMID: 38203692 PMCID: PMC10778810 DOI: 10.3390/ijms25010518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Molecules interacting with CasL (MICALs) are critical mediators of cell motility that act by cytoskeleton rearrangement. However, the molecular mechanisms underlying the regulation of cancer cell invasion remain elusive. The aim of this study was to investigate the potential role of one member of MICALs, i.e., MICALL2, in the invasion and function of ovarian cancer cells. We showed by bioinformatics analysis that MICALL2 expression was significantly higher in tissues of advanced-stage ovarian cancer and associated with poor overall survival of patients. MICALL2 was strongly correlated with the infiltration of multiple types of immune cells and T-cell exhaustion markers. Moreover, enrichment analyses showed that MICALL2 was involved in the tumor-related matrix degradation pathway. Mechanistically, MMP9 was identified as the target gene of MICALL2 for the regulation of invadopodium formation and SKOV3, HO-8910PM cell invasion. In addition, EGFR-AKT-mTOR signaling was identified as the downstream pathway of MICALL2 in the regulation of MMP9 expression. Furthermore, MICALL2 silencing promoted EGFR degradation; however, this effect was abrogated by treatment with the autophagy inhibitors acadesine and chloroquine diphosphate. Silencing of MICALL2 resulted in a suppressive activity of Rac1 while suppressing Rac1 activation attenuated the pro-EGFR, pro-MMP9, and proinvasive effects induced by the overexpression of MICALL2. Collectively, our results indicated that MICALL2 participated in the process of immune infiltration and invasion by ovarian cancer cells. Moreover, MICALL2 prevented EGFR degradation in a Rac1-dependent manner, consequently leading to EGFR-AKT-mTOR-MMP9 signaling activation and invadopodia-mediated matrix degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (T.X.); (F.Y.); (W.Z.); (P.M.); (C.Q.); (Q.W.); (M.Z.); (Y.Z.)
| |
Collapse
|
4
|
Barik GK, Sahay O, Mukhopadhyay A, Manne RK, Islam S, Roy A, Nath S, Santra MK. FBXW2 suppresses breast tumorigenesis by targeting AKT-Moesin-SKP2 axis. Cell Death Dis 2023; 14:623. [PMID: 37736741 PMCID: PMC10517019 DOI: 10.1038/s41419-023-06127-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Oncogene Moesin plays critical role in initiation, progression, and metastasis of multiple cancers. It exerts oncogenic activity due to its high-level expression as well as posttranslational modification in cancer. However, factors responsible for its high-level expression remain elusive. In this study, we identified positive as well as negative regulators of Moesin. Our study reveals that Moesin is a cellular target of F-box protein FBXW2. We showed that FBXW2 suppresses breast cancer progression through directing proteasomal degradation of Moesin. In contrast, AKT kinase plays an important role in oncogenic function of Moesin by protecting it from FBXW2-mediated proteasomal degradation. Mechanistically, AKT phosphorylates Moesin at Thr-558 and thereby prevents its degradation by FBXW2 via weakening the association between FBXW2 and Moesin. Further, accumulated Moesin prevents FBXW2-mediated degradation of oncogene SKP2, showing that Moesin functions as an upstream regulator of oncogene SKP2. In turn, SKP2 stabilizes Moesin by directing its non-degradable form of polyubiquitination and therefore AKT-Moesin-SKP2 oncogenic axis plays crucial role in breast cancer progression. Collectively, our study reveals that FBXW2 functions as a tumor suppressor in breast cancer by restricting AKT-Moesin-SKP2 axis. Thus, AKT-Moesin-SKP2 axis may be explored for the development of therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Anindya Mukhopadhyay
- Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, 700063, India
| | - Rajesh Kumar Manne
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Sehbanul Islam
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Somsubhra Nath
- Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, 700063, India
- Institute of Health Sciences, Presidency University, New Town, Kolkata, West Bengal, 700156, India
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
| |
Collapse
|
5
|
Wang Z, Guan W, Ma Y, Zhou X, Song G, Wei J, Wang C. MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. BMC Cancer 2023; 23:668. [PMID: 37460940 PMCID: PMC10351167 DOI: 10.1186/s12885-023-11113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of β-catenin and its downstream gene through targeting PLCD1. CONCLUSION MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.
Collapse
Affiliation(s)
- Zekun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenzhao Guan
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Ma
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianing Wei
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenyang Wang
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Huang CY, Wei PL, Batzorig U, Makondi PT, Lee CC, Chang YJ. Identification of Moesin (MSN) as a Potential Therapeutic Target for Colorectal Cancer via the β-Catenin-RUNX2 Axis. Int J Mol Sci 2023; 24:10951. [PMID: 37446127 DOI: 10.3390/ijms241310951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
CRC is the second leading cause of cancer-related death. The complex mechanisms of metastatic CRC limit available therapeutic choice. Thus, identifying new CRC therapeutic targets is essential. Moesin (MSN), a member of the ezrin-radixin-moesin family, connects the cell membrane to the actin-based cytoskeleton and regulates cell morphology. We investigated the role of MSN in the progression of CRC. GENT2 and oncomine were used to study MSN expression and CRC patient outcomes. MSN-specific shRNAs or MSN-overexpressed plasmid were used to establish MSN-KD and MSN overexpressed cell lines, respectively. SRB, migration, wound healing, and flow cytometry were used to test cell survival and migration. Propidium iodide and annexin V stain were used to analyze the cell cycle and apoptosis. MSN expression was found to be higher in CRC tissues than in normal tissues. Higher MSN expression is associated with poor overall survival, disease-free survival, and relapse-free survival rates in CRC patients. MSN silencing inhibits cell proliferation, adhesion, migration, and invasion in vitro, whereas MSN overexpression accelerates cell proliferation, adhesion, migration, and invasion. RNA sequencing was used to investigate differentially expressed genes, and RUNX2 was discovered as a possible downstream target for MSN. In CRC patients, RUNX2 expression was significantly correlated with MSN expression. We also found that MSN silencing decreased cytoplasmic and nuclear β-catenin levels. Additionally, pharmacological inhibition of β-catenin in MSN-overexpressed cells led to a reduction of RUNX2, and activating β-catenin signaling by inhibiting GSK3β rescued the RUNX2 downregulation in MSN-KD cells. This confirms that MSN regulates RUNX2 expression via activation of β-catenin signaling. Finally, our result further determined that RUNX2 silencing reduced the ability of MSN overexpression cells to proliferate and migrate. MSN accelerated CRC progression via the β-catenin-RUNX2 axis. As a result, MSN holds the potential to become a new target for CRC treatment.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, San Diego, CA 92093, USA
| | | | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jia Chang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
7
|
Ahandoust S, Li K, Sun X, Li BY, Yokota H, Na S. Intracellular and extracellular moesins differentially regulate Src activity and β-catenin translocation to the nucleus in breast cancer cells. Biochem Biophys Res Commun 2023; 639:62-69. [PMID: 36470073 DOI: 10.1016/j.bbrc.2022.11.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
It is increasingly recognized that a single protein can have multiple, sometimes paradoxical, roles in cell functions as well as pathological conditions depending on its cellular locations. Here we report that moesins (MSNs) in the intracellular and extracellular domains present opposing roles in pro-tumorigenic signaling in breast cancer cells. Using live cell imaging with fluorescence resonance energy transfer (FRET)- and green fluorescent protein (GFP)-based biosensors, we investigated the molecular mechanism underlying the cellular location-dependent effect of MSN on Src and β-catenin signaling in MDA-MB-231 breast cancer cells. Inhibition of intracellular MSN decreased the activities of Src and FAK, whereas overexpression of intracellular MSN increased them. By contrast, extracellular MSN decreased the activities of Src, FAK, and RhoA, as well as β-catenin translocation to the nucleus. Consistently, Western blotting and MTT-based analysis showed that overexpression of intracellular MSN elevated the expression of oncogenic genes, such as p-Src, β-catenin, Lrp5, MMP9, Runx2, and Snail, as well as cell viability, whereas extracellular MSN suppressed them. Conditioned medium derived from MSN-overexpressing mesenchymal stem cells or osteocytes showed the anti-tumor effects by inhibiting the Src activity and β-catenin translocation to the nucleus as well as the activities of FAK and RhoA and MTT-based cell viability. Conditioned medium derived from MSN-inhibited cells increased the Src activity, but it did not affect the activities of FAK and RhoA. Silencing CD44 and/or FN1 in MDA-MB-231 cells blocked the suppression of Src activity and β-catenin accumulation in the nucleus by extracellular MSN. Collectively, the results suggest that cellular location-specific MSN is a strong regulator of Src and β-catenin signaling in breast cancer cells, and that extracellular MSN exerts tumor-suppressive effects via its interaction with CD44 and FN1.
Collapse
Affiliation(s)
- Sina Ahandoust
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Zhang G. Regulatory T-cells-related signature for identifying a prognostic subtype of hepatocellular carcinoma with an exhausted tumor microenvironment. Front Immunol 2022; 13:975762. [PMID: 36189226 PMCID: PMC9521506 DOI: 10.3389/fimmu.2022.975762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T-Cells (Tregs) are important in the progression of hepatocellular cancer (HCC). The goal of this work was to look into Tregs-related genes and develop a Tregs-related prognostic model. We used the weighted gene co-expression network analysis (WGCNA) to look for Tregs-related genes in the TCGA, ICGC, and GSE14520 cohorts and then used the non-negative matrix factorization (NMF) algorithm to find Tregs-related subpopulations. The LASSO-Cox regression approach was used to determine Tregs-related genes, which were then condensed into a risk score. A total of 153 overlapping genes among the three cohorts were considered Tregs-related genes. Based on these genes, two Tregs-associated clusters that varied in both prognostic and biological characteristics were identified. When compared with Cluster 1, Cluster 2 was a TME-exhausted HCC subpopulation with substantial immune cell infiltration but a poor prognosis. Five Tregs-related genes including HMOX1, MMP9, CTSC, SDC3, and TNFRSF11B were finally used to construct a prognostic model, which could accurately predict the prognosis of HCC patients in the three datasets. Patients in the high-risk scores group with bad survival outcomes were replete with immune/inflammatory responses, but exhausted T cells and elevated PD-1 and PD-L1 expression. The results of qRT-PCR and immunohistochemical staining (IHC) analysis in clinical tissue samples confirmed the above findings. Moreover, the signature also accurately predicted anti-PD-L1 antibody responses in the IMvigor210 dataset. Finally, HMOX1, MMP9, and TNFRSF11B were expressed differently in Hep3B and Huh7 cells after being treated with a PD1/PD-L1 inhibitor. In conclusion, our study uncovered a Tregs-related prognostic model that could identify TME- exhausted subpopulations and revealed that PD1/PD-L1 inhibitors could alter the expression levels of HMOX1, MMP9, and TNFRSF11B in Hep3B and Huh7 cells, which might help us better understand Tregs infiltration and develop personalized immunotherapy treatments for HCC patients.
Collapse
|
9
|
Abudula M, Fan X, Zhang J, Li J, Zhou X, Chen Y. Ectopic Endometrial Cell-Derived Exosomal Moesin Induces Eutopic Endometrial Cell Migration, Enhances Angiogenesis and Cytosolic Inflammation in Lesions Contributes to Endometriosis Progression. Front Cell Dev Biol 2022; 10:824075. [PMID: 35557941 PMCID: PMC9086167 DOI: 10.3389/fcell.2022.824075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Endometriosis (EMs) is the most common gynaecological disorder with its etiology and/or pathophysiology remains enigmatic. Recent studies showed that extracellular vesicles (EVs), exosomes in particular, play a critical role in developing various clinical disorders. However, the implication of exosomes in endometriosis progression has not been well elucidated. Method: The ectopic stromal cellular exosomes (eEVs) were assessed by transwell assay, scratch tests, tube formation assay, western blot, and qRT-PCR analysis. Protein expression profiles of exosomes in endometrial tissue and vaginal discharge collected from patients with EMS and healthy donors were analysed by Mass spectrometry. siRNA interference technology was used to inhibit the expression of exosomal protein for the functional analysis in in-vivo. Finally, in-vitro experiments were performed to validate the results that we observed in EMs mouse model. Results:In vitro, we discovered that eEVs improved NSC migratory potential by upregulating MMP9 expression and activity. eEVs also aided angiogenesis and elevated the expression of inflammatory cytokines in ovarian epithelial cells, according to our findings. Moesin (MSN) levels in ESC exosomes were substantially greater than in NSC exosomes (1.22e8±5.58e6 vs. 6.605e7±4.574e6, LFQ intensity), as shown by protein mass spectrometry and bioinformatics analysis. In ectopic stromal cells, ERa receptors stimulated the RhoA/Rock-2/MSN pathway. We discovered that downregulating exosomal moesin reduced NSC migration (about 3-fold change) and MMP9 expression (about 2-fold change). On the other hand, Exomsni inhibited angiogenesis and inflammatory cytokine release. In vivo the result of immunohistochemistry and immunofluorescence demonstrated that exosomal MSN substantially modified the expression of MM9, VEGFR and p-VEGFR in polyclonal lesions. In addition, we discovered an elevation in the expression of proinflammatory factors in the surrounding tissue. Conclusion: Exosomal MSN derived from ectopic stromal cells can contribute to endometriosis progression by mediating the construction of a “migration-vascularization-inflammation” loop in the ectopic environment.
Collapse
Affiliation(s)
| | - Xiaodan Fan
- Department of Gynecology, Ningbo Women and Children’s Hospital, Ningbo, China
| | - Jing Zhang
- Medical School, Ningbo University, Ningbo, China
| | - Jiajie Li
- Department of Gynecology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Xiaoming Zhou
- Department of Gynecology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Yichen Chen
- Department of Gynecology, Ningbo Women and Children’s Hospital, Ningbo, China
- Medical School, Ningbo University, Ningbo, China
- Department of Pharmacology, Ningbo Institute of Medical Science, Ningbo, China
- *Correspondence: Yichen Chen,
| |
Collapse
|
10
|
Hu X, Liu Y, Bing Z, Ye Q, Li C. High Moesin Expression Is a Predictor of Poor Prognosis of Breast Cancer: Evidence From a Systematic Review With Meta-Analysis. Front Oncol 2021; 11:650488. [PMID: 34900662 PMCID: PMC8660674 DOI: 10.3389/fonc.2021.650488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Owing to metastases and drug resistance, the prognosis of breast cancer is still dismal. Therefore, it is necessary to find new prognostic markers to improve the efficacy of breast cancer treatment. Literature shows a controversy between moesin (MSN) expression and prognosis in breast cancer. Here, we aimed to conduct a systematic review and meta-analysis to evaluate the prognostic relationship between MSN and breast cancer. Literature retrieval was conducted in the following databases: PubMed, Web of Science, Embase, and Cochrane. Two reviewers independently performed the screening of studies and data extraction. The Gene Expression Omnibus (GEO) database including both breast cancer gene expression and follow-up datasets was selected to verify literature results. The R software was employed for the meta-analysis. A total of 9 articles with 3,039 patients and 16 datasets with 2,916 patients were ultimately included. Results indicated that there was a significant relationship between MSN and lymph node metastases (P < 0.05), and high MSN expression was associated with poor outcome of breast cancer patients (HR = 1.99; 95% CI 1.73-2.24). In summary, there is available evidence to support that high MSN expression has valuable importance for the poor prognosis in breast cancer patients. SYSTEMATIC REVIEW REGISTRATION https://inplasy.com/inplasy-2020-8-0039/.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yang Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Zhitong Bing
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Qian Ye
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Duan L, Jiang H, Liu J, Liu Y, Ma T, Xie Y, Wang L, Cheng J, Zou J, Wu J, Liu S, Gao M, Li W, Xie H. Whole Transcriptome Analysis Revealed a Stress Response to Deep Underground Environment Conditions in Chinese Hamster V79 Lung Fibroblast Cells. Front Genet 2021; 12:698046. [PMID: 34603371 PMCID: PMC8481809 DOI: 10.3389/fgene.2021.698046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Prior studies have shown that the proliferation of V79 lung fibroblast cells could be inhibited by low background radiation (LBR) in deep underground laboratory (DUGL). In the current study, we revealed further molecular changes by performing whole transcriptome analysis on the expression profiles of long non-coding RNA (lncRNA), messenger RNA (mRNA), circular RNA (circRNA) and microRNA (miRNA) in V79 cells cultured for two days in a DUGL. Methods: Whole transcriptome analysis including lncRNA, mRNAs, circ RNA and miRNA was performed in V79 cells cultured for two days in DUGL and above ground laboratory (AGL), respectively. The differentially expressed (DE) lncRNA, mRNA, circRNA, and miRNA in V79 cells were identified by the comparison between DUGL and AGL groups. Quantitative real-time polymerase chain reaction(qRT-PCR)was conducted to verify the selected RNA sequencings. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was analyzed for the DE mRNAs which enabled to predict target genes of lncRNA and host genes of circRNA. Results: With |log2(Fold-change)| ≥ 1.0 and p < 0.05, a total of 1257 mRNAs (353 mRNAs up-regulated, 904 mRNAs down-regulated), 866 lncRNAs (145 lncRNAs up-regulated, 721 lncRNAs down-regulated), and 474 circRNAs (247 circRNAs up-regulated, 227 circRNAs down-regulated) were significantly altered between the two groups. There was no significant difference in miRNA between the two groups. The altered RNA profiles were mainly discovered in lncRNAs, mRNAs and circRNAs. DE RNAs were involved in many pathways including ECM-RI, PI3K-Akt signaling, RNA transport and the cell cycle under the LBR stress of the deep underground environment. Conclusion: Taken together, these results suggest that the LBR in the DUGL could induce transcriptional repression, thus reducing metabolic process and reprogramming the overall gene expression profile in V79 cells.
Collapse
Affiliation(s)
- Liju Duan
- Wangjiang Hospital, Sichuan University, Chengdu, China
| | - Hongying Jiang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Ma
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Cheng
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingzhong Gao
- College of Water Resources & Hydropower, Sichuan University, Chengdu, China.,Institute of Deep Earth Science and Green Energy, Shenzhen University, Shenzhen, China
| | - Weimin Li
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Heping Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.,College of Water Resources & Hydropower, Sichuan University, Chengdu, China.,Institute of Deep Earth Science and Green Energy, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Peng JL, Wu JZ, Li GJ, Wu JL, Xi YM, Li XQ, Wang L. Identification of potential biomarkers of peripheral blood mononuclear cell in hepatocellular carcinoma using bioinformatic analysis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24172. [PMID: 33466191 PMCID: PMC7808450 DOI: 10.1097/md.0000000000024172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the cause of an overwhelming number of cancer-related deaths across the world. Developing precise and noninvasive biomarkers is critical for diagnosing HCC. Our research was designed to explore potentially useful biomarkers of host peripheral blood mononuclear cell (PBMC) in HCC by integrating comprehensive bioinformatic analysis. METHODS Gene expression data of PBMC in both healthy individuals and patients with HCC were extracted from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs). The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to annotate the function of DEGs. Protein-protein interaction analysis was performed to screen the hub genes from DEGs. cBioportal database analysis was performed to assess the prognostic significance of hub genes. The Cancer Cell Line Encyclopedia (CCLE) and The Human Protein Atlas (HPA) database analyses were performed to confirm the expression levels of the hub genes in HCC cells and tissue. RESULTS A total of 95 DEGs were screened. Results of the GO analysis revealed that DEGs were primarily involved in platelet degranulation, cytoplasm, and protein binding. Results of the KEGG analysis indicated that DEGs were primarily enriched in focal adhesion. Five genes, namely, myosin light chain kinase (MYLK), interleukin 1 beta (IL1B), phospholipase D1 (PLD1), cortactin (CTTN), and moesin (MSN), were identified as hub genes. A search in the CCLE and HPA database showed that the expression levels of these hub genes were remarkably increased in the HCC samples. Survival analysis revealed that the overexpression of MYLK, IL1B, and PLD1 may have a significant effect on HCC survival. The aberrant high expression levels of MYLK, IL1B, and PLD1 strongly indicated worse prognosis in patients with HCC. CONCLUSIONS The identified hub genes may be closely linked with HCC tumorigenicity and may act as potentially useful biomarkers for the prognostic prediction of HCC in PBMC samples.
Collapse
Affiliation(s)
- Jin-lin Peng
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Ji-zhou Wu
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Guo-jian Li
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Jian-lin Wu
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Yu-mei Xi
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Xiao-qing Li
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Lei Wang
- College of Health and Rehabilitation, Chengdu University of Chinese Medicine, Chengdu, Sichuan, PR China
| |
Collapse
|
13
|
Hang C, Zhao S, Wang T, Zhang Y. Oncogenic UBE3C promotes breast cancer progression by activating Wnt/β-catenin signaling. Cancer Cell Int 2021; 21:25. [PMID: 33407510 PMCID: PMC7789303 DOI: 10.1186/s12935-020-01733-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023] Open
Abstract
Background Breast cancer (BrCa) is the most common female malignancy worldwide and has the highest morbidity among all cancers in females. Unfortunately, the mechanisms of BrCa growth and metastasis, which lead to a poor prognosis in BrCa patients, have not been well characterized. Methods Immunohistochemistry (IHC) was performed on a BrCa tissue microarray (TMA) containing 80 samples to evaluate ubiquitin protein ligase E3C (UBE3C) expression. In addition, a series of cellular experiments were conducted to reveal the role of UBE3C in BrCa. Results In this research, we identified UBE3C as an oncogenic factor in BrCa growth and metastasis for the first time. UBE3C expression was upregulated in BrCa tissues compared with adjacent breast tissues. BrCa patients with high nuclear UBE3C expression in tumors showed remarkably worse overall survival (OS) than those with low nuclear expression. Knockdown of UBE3C expression in MCF-7 and MDA-MB-453 BrCa cells inhibited cell proliferation, migration and invasion in vitro, while overexpression of UBE3C in these cells exerted the opposite effects. Moreover, UBE3C promoted β-catenin nuclear accumulation, leading to the activation of the Wnt/β-catenin signaling pathway in BrCa cells. Conclusion Collectively, these results imply that UBE3C plays crucial roles in BrCa development and progression and that UBE3C may be a novel target for the prevention and treatment of BrCa.
Collapse
Affiliation(s)
- Chen Hang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Shanojie Zhao
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Tiejun Wang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China. .,Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48, Huaishu Road, Wuxi, 214023, China.
| |
Collapse
|
14
|
Wang J, Luo J, Sun Z, Sun F, Kong Z, Yu J. Identification of MTHFD2 as a novel prognosis biomarker in esophageal carcinoma patients based on transcriptomic data and methylation profiling. Medicine (Baltimore) 2020; 99:e22194. [PMID: 32925794 PMCID: PMC7489726 DOI: 10.1097/md.0000000000022194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic regulatory mechanism in esophageal carcinoma (EC) and is associated with genomic instability and carcinogenesis. In the present study, we aimed to identify tumor biomarkers for predicting prognosis of EC patients.We downloaded mRNA expression profiles and DNA methylation profiles associated with EC from the Gene Expression Omnibus database. Differentially expressed and differentially methylated genes between tumor tissues and adjacent normal tissue samples were identified. Functional enrichment analyses were performed, followed by the construction of protein-protein interaction networks. Data were validated based on methylation profiles from The Cancer Genome Atlas. Candidate genes were further verified according to survival analysis and Cox regression analysis.We uncovered multiple genes with differential expression or methylation in tumor samples compared with normal samples. After taking the intersection of 3 differential gene sets, we obtained a total of 232 overlapping genes. Functional enrichment analysis revealed that these genes are related to pathways such as "glutathione metabolism," "p53 signaling pathway," and "focal adhesion." Furthermore, 8 hub genes with inversed expression and methylation correlation were identified as candidate genes. The abnormal expression levels of MSN, PELI1, and MTHFD2 were correlated with overall survival times in EC patients (P < .05). Only MTHFD2 was significantly associated with a pathologic stage according to univariate analysis (P = .037) and multivariate analysis (P = .043).Our study identified several novel EC biomarkers with prognostic value by integrated analysis of transcriptomic data and methylation profiles. MTHFD2 could serve as an independent biomarker for predicting prognosis and pathological stages of EC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Ze Kong
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Jingping Yu
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|