1
|
Plais L, Trachsel L, Scheuermann J. Asymmetry of Dual-Display DNA-Encoded Chemical Libraries. Bioconjug Chem 2024; 35:147-153. [PMID: 38266192 DOI: 10.1021/acs.bioconjchem.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
While dual-display DNA-encoded chemical libraries (DELs) are increasingly employed for ligand discovery, some of their fundamental properties have not yet been studied in-depth. Aided with fluorescence polarization experiments, we demonstrate that dual-display DELs are intrinsically asymmetrical entities, and we deduce practical guidelines to perform better-informed on-DNA hit validation from these libraries.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Louis Trachsel
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| |
Collapse
|
2
|
Xie TJ, Xie JL, Luo YJ, Mao K, Huang CZ, Li YF, Zhen SJ. CRISPR-Cas12a Coupled with DNA Nanosheet-Amplified Fluorescence Anisotropy for Sensitive Detection of Biomolecules. Anal Chem 2023; 95:7237-7243. [PMID: 37120835 DOI: 10.1021/acs.analchem.3c00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
DNA nanosheets (DNSs) have been utilized effectively as a fluorescence anisotropy (FA) amplifier for biosensing. But, their sensitivity needs to be further improved. Herein, CRISPR-Cas12a with strong trans-cleavage activity was utilized to enhance the FA amplification ability of DNSs for the sensitive detection of miRNA-155 (miR-155) as a proof-of-principle target. In this method, the hybrid of the recognition probe of miR-155 (T1) and a blocker sequence (T2) was immobilized on the surface of magnetic beads (MBs). In the presence of miR-155, T2 was released by a strand displacement reaction, which activated the trans-cleavage activity of CRISPR-Cas12a. The single-stranded DNA (ssDNA) probe modified with a carboxytetramethylrhodamine (TAMRA) fluorophore was cleaved in large quantities and could not bind to the handle chain on DNSs, inducing a low FA value. In contrast, in the absence of miR-155, T2 could not be released and the trans-cleavage activity of CRISPR-Cas12a could not be activated. The TAMRA-modified ssDNA probe remained intact and was complementary to the handle chain on the DNSs, and a high FA value was obtained. Thus, miR-155 was detected through the obviously decreased FA value with a low limit of detection (LOD) of 40 pM. Impressively, the sensitivity of this method was greatly improved about 322 times by CRISPR-Cas12a, confirming the amazing signal amplification ability of CRISPR-Cas12a. At the same time, the SARS-CoV-2 nucleocapsid protein was detected by the strategy successfully, indicating that this method was general. Moreover, this method has been applied in the analysis of miR-155 in human serum and the lysates of cells, which provides a new avenue for the sensitive determination of biomarkers in biochemical research and disease diagnosis.
Collapse
Affiliation(s)
- Tian Jin Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Jia Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Yu Jie Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Kai Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| |
Collapse
|