1
|
Gonzalez E, Lee MD, Tierney BT, Lipieta N, Flores P, Mishra M, Beckett L, Finkelstein A, Mo A, Walton P, Karouia F, Barker R, Jansen RJ, Green SJ, Weging S, Kelliher J, Singh NK, Bezdan D, Galazska J, Brereton NJB. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024; 10:71. [PMID: 39209868 PMCID: PMC11362537 DOI: 10.1038/s41522-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The ISS rodent habitat has provided crucial insights into the impact of spaceflight on mammals, inducing symptoms characteristic of liver disease, insulin resistance, osteopenia, and myopathy. Although these physiological responses can involve the microbiome on Earth, host-microbiota interactions during spaceflight are still being elucidated. We explore murine gut microbiota and host gene expression in the colon and liver after 29 and 56 days of spaceflight using multiomics. Metagenomics revealed significant changes in 44 microbiome species, including relative reductions in bile acid and butyrate metabolising bacteria like Extibacter muris and Dysosmobacter welbionis. Functional prediction indicate over-representation of fatty acid and bile acid metabolism, extracellular matrix interactions, and antibiotic resistance genes. Host gene expression described corresponding changes to bile acid and energy metabolism, and immune suppression. These changes imply that interactions at the host-gut microbiome interface contribute to spaceflight pathology and that these interactions might critically influence human health and long-duration spaceflight feasibility.
Collapse
Affiliation(s)
- E Gonzalez
- Microbiome Unit, Canadian Centre for Computational Genomics, Department of Human Genetics, McGill University, Montréal, Canada
- Centre for Microbiome Research, McGill University, Montréal, Canada
| | - M D Lee
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - N Lipieta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - P Flores
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - M Mishra
- Grossman School of Medicine, New York University, New York, USA
| | - L Beckett
- University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Finkelstein
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - A Mo
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - P Walton
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - F Karouia
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Centre for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - R Barker
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Yuri GmbH, Wiesentalstr. 40, 88074, Meckenbeuren, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - R J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Centre, 1653 W. Congress Parkway, Chicago, IL, 60612, USA
| | - S Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - J Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N K Singh
- Department of Industrial Relations, Division of Occupational Safety and Health, Oakland, USA
| | - D Bezdan
- University of Wisconsin-Madison, Madison, WI, USA
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - J Galazska
- Space Biosciences Research Branch, NASA Ames Research Centre, Moffett Field, CA, USA
| | - N J B Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Mu RF, Hua J, Li D, Luo SH, Chen YG, Jing SX, Liu Y, Li SH. Nematicidal Activity of 20-Deoxyingenol-3-angelate from Euphorbia peplus Latex Through Protein Kinase C Isotype TPA-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9746-9754. [PMID: 38602331 DOI: 10.1021/acs.jafc.3c07861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The latex of Euphorbia peplus and its major component 20-deoxyingenol-3-angelate (DI3A) displayed significant nematicidal activity against Caenorhabditis elegans and Panagrellus redivivus. DI3A treatment inhibited the growth and development of nematodes and caused significantly negative effects on locomotion behavior, reproduction, and accumulation of reactive oxygen species. Transcriptome analysis indicated that differential expression genes in DI3A-treated C. elegans were mainly associated with the metabolism, growth, and development process, which were further confirmed by RT-qPCR experiments. The expression level of TPA-1 gene encoding a protein kinase C isotype was obviously upregulated by DI3A treatment, and knockdown of TPA-1 by RNAi technology in the nematode could relieve the growth-inhibitory effect of DI3A. Metabolic analysis indicated that DI3A was hardly metabolized by C. elegans, but a glycosylated indole derivative was specifically accumulated likely due to the activation of detoxification. Overall, our findings suggested that DI3A from E. peplus latex exerted a potent nematicidal effect through the gene TPA-1, which provides a potential target for the control of nematodes and also suggests the potential application value of E. peplus latex and DI3A as botanical nematicides.
Collapse
Affiliation(s)
- Rong-Fang Mu
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
3
|
Wang Y, Hua X, Wang D. Exposure to 6-PPD quinone enhances lipid accumulation through activating metabolic sensors of SBP-1 and MDT-15 in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121937. [PMID: 37307863 DOI: 10.1016/j.envpol.2023.121937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Although it has been shown that exposure to 6-PPDQ can cause toxicity on environmental organisms, its possible effects on metabolic state remain largely unclear. We here determined the effect of 6-PPDQ exposure on lipid accumulation in Caenorhabditis elegans. We observed increase in triglyceride content, enhancement in lipid accumulation, and increase in size of lipid droplets in 6-PPDQ (1-10 μg/L) exposed nematodes. This detected lipid accumulation was associated with both increase in fatty acid synthesis reflected by increased expressions of fasn-1 and pod-2 and inhibition in mitochondrial and peroxisomal fatty acid β-oxidation indicated by decreased expressions of acs-2, ech-2, acs-1, and ech-3. The observed lipid accumulation in 6-PPDQ (1-10 μg/L) exposed nematodes was also related to the increase in synthesis of monounsaturated fatty acylCoAs reflected by altered expressions of fat-5, fat-6, and fat-7. Exposure to 6-PPDQ (1-10 μg/L) further increased expressions of sbp-1 and mdt-15 encoding two metabolic sensors to initiate the lipid accumulation and to regulate the lipid metabolism. Moreover, the observed increase in triglyceride content, enhancement in lipid accumulation, and alterations in fasn-1, pod-2, acs-2, and fat-5 expressions in 6-PPDQ exposed nematodes were obviously inhibited by sbp-1 and mdt-15 RNAi. Our observations demonstrated the risk of 6-PPDQ at environmentally relevant concentration in affecting lipid metabolic state in organisms.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
4
|
Liu Z, Cheng L, Yang B, Cao Z, Sun M, Feng Y, Xu A. Effects of moderate static magnetic fields on the lipogenesis and lipolysis in different genders of Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115005. [PMID: 37210995 DOI: 10.1016/j.ecoenv.2023.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
With the rapid development of magnetic technology, the biological effects of moderate static magnetic fields (SMFs) have attracted increasing research interest due to their potential medical diagnosis and treatment application. The present study explored the effects of moderate SMFs on the lipid metabolism of Caenorhabditis elegans (C. elegans) in different genders including male, female, and hermaphrodite. We found that the fat content was significantly decreased by moderate SMFs in wild-type N2 worms, which was associated with their development stages. The diameters of lipid droplets in N2 worms, him-5 worms, and fog-2 worms were greatly decreased by 19.23%, 15.38%, and 23.07% at young adult stage under 0.5 T SMF, respectively. The mRNA levels of lipolysis related genes atgl-1 and nhr-76 were significantly up-regulated by SMF exposure, while the mRNA levels of the lipogenesis related genes fat-6, fat-7, and sbp-1 were down-regulated by SMF, whereas the concentration of β-oxidase was increased. There was a slight effect of SMF on the mRNA levels of β-oxidation related genes. Moreover, the insulin and serotonin pathway were regulated by SMF, instead of the TOR pathway. In wild-type worms, we found that their lifespan was prolonged by exposure to 0.5 T SMF. Our data suggested that moderate SMFs could significantly modify the lipogenesis and lipolysis process in C. elegans in a gender and development stage-dependent manner, which could provide a novel insight into understanding the function of moderate SMFs in living organisms.
Collapse
Affiliation(s)
- Zicheng Liu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Meng Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yu Feng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China.
| |
Collapse
|
5
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
6
|
Chen Y, Qin Q, Luo J, Dong Y, Lin C, Chen H, Cao Y, Chen Y, Su Z. Litchi flower essential oil balanced lipid metabolism through the regulation of DAF-2/IIS, MDT-15/SBP-1, and MDT-15/NHR-49 pathway. Front Nutr 2022; 9:934518. [PMID: 36337637 PMCID: PMC9627157 DOI: 10.3389/fnut.2022.934518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Many litchi flowers are discarded in China every year. The litchi flower is rich in volatile compounds and exhibits strong anti-obesity activity. Litchi flower essential oil (LFEO) was extracted by the continuous phase transformation device (CPTD) independently developed by our research group to recycle the precious material resources in litchi flowers. However, its fat-reducing effect and mechanism remain unclear. Employing Caenorhabditis elegans as a model, we found that LFEO significantly reduced fat storage and triglyceride (TG) content in normal, glucose-feeding, and high-fat conditions. LFEO significantly reduced body width in worms and significantly decreased both the size and number of lipid droplets in ZXW618. LFEO treatment did not affect energy intake but increased energy consumption by enhancing the average speed of worms. Further, LFEO might balance the fat metabolism in worms by regulating the DAF-2/IIS, sbp-1/mdt-15, and nhr-49/mdt-15 pathways. Moreover, LFEO might inhibit the expression of the acs-2 gene through nhr-49 and reduce β-oxidation activity. Our study presents new insights into the role of LFEO in alleviating fat accumulation and provides references for the large-scale production of LFEO to promote the development of the litchi circular economy.
Collapse
Affiliation(s)
- Yun Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiao Qin
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingrui Luo
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yusi Dong
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chunxiu Lin
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Houbin Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yunjiao Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zuanxian Su
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
7
|
Zhou R, Liu R, Li W, Wang Y, Wan X, Song N, Yu Y, Xu J, Bu Y, Zhang A. The use of different sublethal endpoints to monitor atrazine toxicity in nematode Caenorhabditis elegans. CHEMOSPHERE 2021; 274:129845. [PMID: 33979940 DOI: 10.1016/j.chemosphere.2021.129845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In this work, Caenorhabditis elegans was employed as an in vivo model to determine the toxic effects of atrazine at different concentrations. After the exposure period from the larval stage L1 to adulthood day 1, atrazine (10 mg/L) significantly decreased the body length and lifespan of nematodes. In addition, exposure to ≥0.01 mg/L atrazine remarkably increased the intestinal reactive oxygen species (ROS) levels and reduced locomotion behavior of nematodes, while exposure to ≥ 1 mg/L atrazine decreased the brood size of nematodes. Moreover, atrazine (0.001-0.1 mg/L) upregulated the expression levels of hsp-6::GFP and hsp-6/60 in nematodes, indicating the activation of mitochondrial unfolded protein response (mtUPR). On the contrary, atrazine (1-10 mg/L) downregulated the expression levels of hsp-6::GFP and hsp-6/60 in nematodes. Furthermore, mtUPR induction governed by the RNAi knockdown of atfs-1 could increase the vulnerability of nematodes against atrazine toxicity. Overall, our findings highlighted the dynamic responses of nematodes toward different concentrations of atrazine, which could be monitored using different sublethal endpoints as bioindicators.
Collapse
Affiliation(s)
- Rong Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ru Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Weixin Li
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yixuan Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiang Wan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ninghui Song
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yue Yu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jiaming Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Aiguo Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
8
|
Wang S, Liu H, Qu M, Wang D. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112239. [PMID: 33892344 DOI: 10.1016/j.ecoenv.2021.112239] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 05/21/2023]
Abstract
Neurotransmission related signals are involved in the control of response to toxicants. We here focused on the tyramine and the glutamate related signals to determine their roles in regulating nanoplastic toxicity in Caenorhabditis elegans. In the range of μg/L, exposure to nanopolystyrene (100 nm) increased the expression of tdc-1 encoding a tyrosine decarboxylase required for synthesis of tyramine, and decreased the expression of eat-4 encoding a glutamate transporter. Both TDC-1 and EAT-4 could act in the neurons to regulate the nanopolystyrene toxicity. Meanwhile, neuronal RNAi knockdown of tdc-1 induced a susceptibility to nanopolystyrene toxicity, and neuronal RNAi knockdown of eat-4 induced a resistance to nanopolystyrene toxicity. In the neurons, TYRA-2 functioned as the corresponding receptor of tyramine and acted upstream of MPK-1 signaling to regulate the nanopolystyrene toxicity. Moreover, during the control of nanopolystyrene toxicity, GLR-4 and GLR-8 were identified as the corresponding glutamate receptors, and acted upstream of JNK-1 signaling and DBL-1 signaling, respectively. Our results demonstrated the crucial roles of tyramine and glutamate related signals in regulating the toxicity of nanoplastics in organisms.
Collapse
Affiliation(s)
- Shuting Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Man Qu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.
| |
Collapse
|
9
|
Liu H, Tian L, Qu M, Wang D. Acetylation regulation associated with the induction of protective response to polystyrene nanoparticles in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125035. [PMID: 33440277 DOI: 10.1016/j.jhazmat.2020.125035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Caenorhabditis elegans is a useful animal model to assess nanoplastic toxicity. Using polystyrene nanoparticles (PS-NPs) as the example of nanoplastics, we found that exposure to PS-NPs (1-100 μg/L) from L1-larvae for 6.5 days increased expression of cbp-1 encoding an acetyltransferase. The susceptibility to PS-NPs toxicity was observed in cbp-1(RNAi) worms, suggesting that CBP-1-mediated histone acetylation regulation reflects a protective response to PS-NPs. The functions of CBP-1 in intestine, neurons, and germline were required for formation of this protective response. In intestinal cells, CBP-1 controlled PS-NPs toxicity by modulating functions of insulin and p38 MAPK signaling pathways. In neuronal cells, CBP-1 controlled PS-NPs toxicity by affecting functions of DAF-7/TGF-β and JNK MAPK signaling pathways. In germline cells, CBP-1 controlled PS-NPs toxicity by suppressing NHL-2 activity, and NHL-2 further regulated PS-NPs toxicity by modulating insulin communication between germline and intestine. Therefore, our data suggested that the CBP-1-mediated histone acetylation regulation in certain tissues is associated with the induction of protective response to PS-NPs in C. elegans.
Collapse
Affiliation(s)
- Huanliang Liu
- Medical School, Southeast University, Nanjing 210009, China
| | - Lijie Tian
- Medical School, Southeast University, Nanjing 210009, China
| | - Man Qu
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
10
|
Liu H, Qiu Y, Wang D. Alteration in expressions of ion channels in Caenorhabditis elegans exposed to polystyrene nanoparticles. CHEMOSPHERE 2021; 273:129686. [PMID: 33486351 DOI: 10.1016/j.chemosphere.2021.129686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Ion channels on cytoplasmic membrane function to sense various environmental stimuli. We here determined the changes of genes encoding ion channels in Caenorhabditis elegans after exposure to polystyrene nanoparticles (PS-NPs). Exposure to 1-1000 μg/L PS-NPs could increase expressions of egl-19, mec-10, trp-4, trp-2, tax-4, cca-1, unc-2, and unc-93, and decrease the expressions of cng-3, mec-6, ocr-2, deg-1, exc-4, kvs-1, and eat-2. Among these 15 ion channel genes, RNAi knockdown of cng-3 or eat-2 caused resistance to PS-NPs toxicity and RNAi knockdown of egl-19, cca-1, tax-4, or unc-93 induced susceptibility to PS-NPs toxicity, suggesting that cng-3, eat-2, egl-19, cca-1, tax-4, and unc-93 were involved in the control of PS-NPs toxicity. EGL-19 and CCA-1 functioned in intestinal cells to control PS-NPs toxicity, and CNG-3, EAT-2, EGL-19, TAX-4, and UNC-93 functioned in neuronal cells to control PS-NPs. Moreover, in intestinal cells of PS-NPs exposed worms, cca-1 RNAi knockdown decreased elt-2 expression, and egl-19 RNAi knockdown decreased daf-16 and elt-2 expressions. In neuronal cells of PS-NPs exposed worms, eat-2 RNAi knockdown increased jnk-1, mpk-1, and dbl-1 expressions, unc-93 RNAi knockdown decreased mpk-1 and daf-7 expressions, and tax-4 RNAi knockdown decreased jnk-1 and daf-7 expressions. Therefore, two molecular networks mediated by ion channels in intestinal cells and neuronal cells were dysregulated by PS-NPs exposure in C. elegans. Our data suggested that the dysregulation in expressions of these ion channels mediated a protective response to PS-NPs in the range of μg/L in worms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
11
|
Sun L, Liao K, Wang D. Comparison of transgenerational reproductive toxicity induced by pristine and amino modified nanoplastics in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144362. [PMID: 33434799 DOI: 10.1016/j.scitotenv.2020.144362] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 05/21/2023]
Abstract
Certain modifications can aggravate the toxicity of nanoplastics. However, the influence of surface amino modification on transgenerational impairment induced by nanoplastics remains largely unclear. Pristine nanopolystyrene (NPS) and amino modified NPS (NPS-NH2) were used to determine their transgenerational toxicity in Caenorhabditis elegans. Exposure to 100 μg/L pristine NPS in parents (P0) cause a decrease in reproductive capacity in the F1-F3 generations and the damage on gonad development in the F1-F2 generations. In contrast, exposure to 10 μg/L NPS-NH2 caused toxicity on reproductive capacity and gonad development in the F1 generation. The toxic effects of NPS-NH2 on reproductive capacity and gonad development in the F1-F3 generations were more severe than those of pristine NPS. Moreover, amino modification could increase transgenerational toxicity of NPS in inducing apoptosis of germline and in affecting expressions of ced-1, ced-4, and ced-9. Our data demonstrate that surface modification of NPS with amino groups enhances transgenerational reproductive toxicity of NPS in C. elegans.
Collapse
Affiliation(s)
- Lingmei Sun
- Medical School, Southeast University, Nanjing 210009, China
| | - Kai Liao
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
12
|
Wang S, Zhang R, Wang D. Induction of protective response to polystyrene nanoparticles associated with methylation regulation in Caenorhabditis elegans. CHEMOSPHERE 2021; 271:129589. [PMID: 33453486 DOI: 10.1016/j.chemosphere.2021.129589] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The epigenetic regulation mechanisms for toxicity induction of nanoplastics in organisms remain largely unknown. In Caenorhabditis elegans, we found that prolonged exposure to 1-100 μg/L polystyrene nanoparticles (PS-NPs) decreased expression of MET-2, a H3K9 methyltransferase. Meanwhile, RNAi knockdown of met-2 suppressed the PS-NPs toxicity in inducing production of reactive oxygen species (ROS) and in decreasing locomotion behavior, which suggesting that the decrease in MET-2 expression reflected a protective response. This resistance to PS-NPs toxicity could be further detected in worms with met-2 RNAi knockdown in both intestinal cells and germline cells. In PS-NPs exposed worms, intestinal RNAi knockdown of met-2 significantly increased expressions of daf-16, bar-1, and elt-2. Intestinal RNAi knockdown of daf-16, bar-1, or elt-2 suppressed the resistance of met-2(RNAi) worms to PS-NPs toxicity, suggesting that MET-2 functioned upstream of ELT-2, BAR-1, and DAF-16 in intestinal cells to control PS-NPs toxicity. Moreover, in PS-NPs exposed worms, germline RNAi knockdown of met-2 significantly decreased expressions of wrt-3 and pat-12. RNAi knockdown of wrt-3 or pat-12 further inhibited the susceptibility of worms overexpressing germline MET-2 to PS-NPs toxicity, suggesting that MET-2 functioned upstream of PAT-12 and WRT-3 in germline cells to control PS-NPs toxicity. Therefore, our data provided an important molecular basis for MET-2-mediated methylation regulation in causing protective response to nanoplastics in organisms.
Collapse
Affiliation(s)
- Shuting Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Ruijie Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
13
|
Yang Y, Dong W, Wu Q, Wang D. Response of G protein-coupled receptor CED-1 in germline to polystyrene nanoparticles in Caenorhabditis elegans. NANOSCALE ADVANCES 2021; 3:1997-2006. [PMID: 36133095 PMCID: PMC9419163 DOI: 10.1039/d0na00867b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 05/30/2023]
Abstract
The deposition of a certain amount of nanopolystyrene (NPS) can be observed in the gonad of Caenorhabditis elegans. However, we still know little about the response of germline towards NPS exposure. In the germline of C. elegans, NPS (1-1000 μg L-1) increased the expression levels of two G protein-coupled receptors (GPCRs), namely PAQR-2 and CED-1. Moreover, susceptibility to NPS toxicity was observed in ced-1(RNAi) worms, which suggested that the protective response of germline was mediated by GPCR CED-1. In the germline, five proteins (CED-10, VPS-34, SNX-1, RAB-7, and RAB-14) functioned as downstream targets of GPCR CED-1 in controlling NPS toxicity. Furthermore, these five targets in the germline regulated NPS toxicity by affecting the activities of p38 MAPK and insulin signaling pathways in intestinal cells. Therefore, we raised a GPCR CED-1-mediated signaling cascade in the germline in response to NPS exposure, which is helpful for understanding the molecular basis of the germline in response to NPS exposure.
Collapse
Affiliation(s)
- Yunhan Yang
- Medical School, Southeast University Nanjing 210009 China
| | - Wenting Dong
- Medical School, Southeast University Nanjing 210009 China
| | - Qiuli Wu
- Medical School, Southeast University Nanjing 210009 China
| | - Dayong Wang
- Medical School, Southeast University Nanjing 210009 China
| |
Collapse
|
14
|
Zhao Y, Xu R, Chen X, Wang J, Rui Q, Wang D. Induction of protective response to polystyrene nanoparticles associated with dysregulation of intestinal long non-coding RNAs in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111976. [PMID: 33517035 DOI: 10.1016/j.ecoenv.2021.111976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Intestinal barrier plays a crucial function during the response to polystyrene nanoparticles (PS-NPs) in nematode Caenorhabditis elegans. Long non-coding RNAs (lncRNAs) are involved in the control of various biological processes, including stress response. We here used C. elegans to determine intestinal lncRNAs dysregulated by PS-NPs (1-100 μg/L). In intestine of PS-NPs exposed worms, we found four lncRNAs (linc-61, linc-50, linc-9, and linc-2) in response to PS-NPs and with the function in controlling PS-NPs toxicity. The alteration in expressions of these four intestinal lncRNAs reflected a protective response to PS-NPs exposure. During the response to PS-NPs, limited number of transcriptional factors functioned as the downstream targets of these four lncRNAs. linc-2 acted upstream of DAF-16, linc-9 acted upstream of NHR-77, linc-50 functioned upstream of DAF-16, and linc-61 regulated the functions of DAF-16, DVE-1, and FKH-2 to control PS-NPs toxicity. The obtained data demonstrated the important role of lncRNAs in intestinal barrier to mediate a protective response to PS-NPs exposure at low concentrations.
Collapse
Affiliation(s)
- Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoran Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
15
|
Liu H, Zhao Y, Bi K, Rui Q, Wang D. Dysregulated mir-76 mediated a protective response to nanopolystyrene by modulating heme homeostasis related molecular signaling in nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112018. [PMID: 33550076 DOI: 10.1016/j.ecoenv.2021.112018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 05/21/2023]
Abstract
The underlying mechanisms of microRNAs (miRNAs) in regulating nanoplastic toxicity are still largely unclear in organisms. In nanopolystyrene (NPS) exposed Caenorhabditis elegans, the expression of mir-76 (a neuronal miRNA) was significantly decreased, and the mir-76 mutant was resistant to the toxicity of NPS. The aim of this study was to determine the molecular basis of mir-76 in controlling NPS toxicity in nematodes. The mir-76 mutation increased expression of glb-10 encoding a globin protein in NPS (1 μg/L) exposed nematodes. Exposure to NPS (1-100 μg/L) increased the glb-10 expression, and the glb-10(RNAi) worm was susceptible to NPS toxicity in inducing reactive oxygen species (ROS) production and in decreasing locomotion behavior. Using ROS production and locomotion behavior as endpoints, mutation of glb-10 inhibited resistance of mir-76 mutant to NPS toxicity, and neuronal overexpression of mir-76 inhibited the resistance to NPS toxicity in nematodes overexpressing neuronal glb-10 containing 3' untranslated region (3'UTR). Thus, GLB-10 functioned as a target of mir-76 in the neurons to regulate the NPS toxicity. Moreover, a signaling cascade of HRG-7-HRG-5 required for the control of heme homeostasis was identified to function downstream of neuronal GLB-10 to regulate the NPS toxicity. In this signaling cascade, the neuronal HRG-7 regulated the NPS toxicity by antagonizing function of intestinal HRG-5. Furthermore, in the intestine, HRG-5 controlled NPS toxicity by inhibiting functions of hypoxia-inducible transcriptional factor HIF-1 and transcriptional factor ELT-2. Our results highlight the crucial function of heme homeostasis related signaling in regulating the NPS toxicity in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Bi
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
16
|
Liu H, Wang D. Intestinal mitochondrial unfolded protein response induced by nanoplastic particles in Caenorhabditis elegans. CHEMOSPHERE 2021; 267:128917. [PMID: 33189400 DOI: 10.1016/j.chemosphere.2020.128917] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/18/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
In organisms, activation of mitochondrial unfolded protein response (mt UPR) provides the protective strategy against toxicity of environmental exposures. The aim of this study was to determine the activation of intestinal mt UPR and the underlying mechanisms in nanopolystyrene (100 nm) exposed Caenorhabditis elegans. The exposure was performed from L1-larvae for approximately 6.5-day. Activation of mt UPR as reflected by expressions of both HSP-6::GFP and hsp-6 in the intestine could be detected in nanopolystyrene (1-100 μg/L) exposed nematodes. Meanwhile, the susceptibility to nanoplastic toxicity was observed in hsp-6(RNAi) nematodes, suggesting the protective function of intestinal activation of mt UPR. After nanoplastic exposure, the activation of intestinal mt UPR was due to increase in expressions of ATFS-1, UBL-5, and DVE-1. Moreover, the activations of intestinal mt UPR mediated by ATFS-1, DVE-1, and UBL-5 was under the control of ELT-2 signaling, Wnt signaling, and insulin signaling, respectively. In the intestine, UBL-5, DVE-1, and ATFS-1 functioned in different pathways to control nanoplastic toxicity. Therefore, we provide an important molecular network of mt UPR activation in intestine of nematodes against the nanoplastic toxicity. Our findings highlight the importance of mt UPR activation in mediating a protective response to nanoplastics at low concentrations in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
17
|
Yang Y, Wu Q, Wang D. Epigenetic response to nanopolystyrene in germline of nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111404. [PMID: 33002821 DOI: 10.1016/j.ecoenv.2020.111404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 05/21/2023]
Abstract
microRNAs (miRNAs) provide an epigenetic regulation mechanism for the response to environmental toxicants. mir-38, a germline miRNA, was increased by exposure to nanopolystyrene (100 nm). In this study, we further found that germline overexpression of mir-38 decreased expressions of nhl-2 encoding a miRISC cofactor, ndk-1 encoding a homolog of NM23-H1, and wrt-3 encoding a homolog of PPIL-2. Meanwhile, germline-specific RNAi knockdown of nhl-2, ndk-1, or wrt-3 caused the resistance to nanopolystyrene toxicity. Additionally, mir-38 overexpression suppressed the resistance of nematodes overexpressing germline nhl-2, ndk-1, or wrt-3 containing 3'UTR, suggesting the role of NHL-2, NDK-1, and WRT-3 as the targets of germline mir-38 in regulating the response to nanopolystyrene. Moreover, during the control of response to nanopolystyrene, EKL-1, a Tudor domain protein, was identified as the downstream target of germline NHL-2, kinase suppressors of Ras (KSR-1 and KSR-2) were identified as the downstream targets of germline NDK-1, and ASP-2, a homolog of BACE1, was identified as the downstream target of germline WRT-3. Our results raised a mir-38-mediated molecular network in the germline in response to nanopolystyrene in nematodes. Our data provided an important basis for our understanding the response of germline of organisms to nanoplastic exposure.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
18
|
microRNAs involved in the control of toxicity on locomotion behavior induced by simulated microgravity stress in Caenorhabditis elegans. Sci Rep 2020; 10:17510. [PMID: 33060753 PMCID: PMC7567087 DOI: 10.1038/s41598-020-74582-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) post-transcriptionally regulate the expression of targeted genes. We here systematically identify miRNAs in response to simulated microgravity based on both expressions and functional analysis in Caenorhabditis elegans. After simulated microgravity treatment, we observed that 19 miRNAs (16 down-regulated and 3 up-regulated) were dysregulated. Among these dysregulated miRNAs, let-7, mir-54, mir-67, mir-85, mir-252, mir-354, mir-789, mir-2208, and mir-5592 were required for the toxicity induction of simulated microgravity in suppressing locomotion behavior. In nematodes, alteration in expressions of let-7, mir-67, mir-85, mir-252, mir-354, mir-789, mir-2208, and mir-5592 mediated a protective response to simulated microgravity, whereas alteration in mir-54 expression mediated the toxicity induction of simulated microgravity. Moreover, among these candidate miRNAs, let-7 regulated the toxicity of simulated microgravity by targeting and suppressing SKN-1/Nrf protein. In the intestine, a signaling cascade of SKN-1/Nrf-GST-4/GST-5/GST-7 required for the control of oxidative stress was identified to act downstream of let-7 to regulate the toxicity of simulated microgravity. Our data demonstrated the crucial function of miRNAs in regulating the toxicity of simulated microgravity stress in organisms. Moreover, our results further provided an important molecular basis for epigenetic control of toxicity of simulated microgravity.
Collapse
|