1
|
Zhao R, Shu W, Hu WS, Chen C, Ning JY, Luo J, Bai SP, Cao JM, Zhou X, Wang DP. Structure-based discovery of dual-target inhibitors of the helicase from bagaza virus. Int J Biol Macromol 2025; 294:139536. [PMID: 39765299 DOI: 10.1016/j.ijbiomac.2025.139536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Bagaza virus (BAGV) is a mosquito-borne flavivirus and has caused significant avian death in many regions, and also garnered recognition as a significant human pathogen causing diseases like encephalitis. The genome of BAGV encodes ten proteins including three structural proteins and seven nonstructural proteins. The C-terminus of the BAGV NS3 helicase serves as a helicase during BAGV replication, aiding in ATP hydrolysis and unwinding of double-stranded RNA. Here we determined the crystal structure of BAGV helicase and revealed the NTP and RNA binding pockets in the helicase which may be used for exploiting antiviral therapeutics. Using structure-based virtual screening, we discovered 20 compounds targeting both NTP and RNA binding pockets of the helicase. Molecular docking, mutation analysis, isothermal calorimetry (ITC) and the ATPase activity assay demonstrated that epigallocatechin-3-gallate (EGCG), and other top three screened compounds (Quercitrin, Citicoline sodium, Isochlorogenic acid C), showed binding affinities for both the NTP binding site and the RNA binding site of BAGV helicase, and inhibited the ATPase activity of the helicase. Taken together, our discovery of dual-target inhibitors provides a viable strategy for advancing innovative therapies against BAGV, as well as other flaviviruses.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Wen Shu
- Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Wen-Shu Hu
- Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Jun-Ya Ning
- Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jing Luo
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Ji-Min Cao
- Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China.
| | - Xin Zhou
- Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China.
| | - De-Ping Wang
- Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Donaldson MK, Zanders LA, Jose J. Functional Roles and Host Interactions of Orthoflavivirus Non-Structural Proteins During Replication. Pathogens 2025; 14:184. [PMID: 40005559 PMCID: PMC11858440 DOI: 10.3390/pathogens14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to widen their geographic distribution, expanding endemic zones. Flaviviruses such as dengue virus, Zika virus, West Nile virus, and tick-borne encephalitis virus cause debilitating and fatal infections globally. In 2024, the World Health Organization and the Pan American Health Organization declared the current dengue situation a Multi-Country Grade 3 Outbreak, the highest level. FDA-approved treatment options for diseases caused by flaviviruses are limited or non-existent, and vaccines are suboptimal for many flaviviruses. Understanding the molecular characteristics of the flavivirus life cycle, virus-host interactions, and resulting pathogenesis in various cells and model systems is critical for developing effective therapeutic intervention strategies. This review will focus on the virus-host interactions of mosquito- and tick-borne flaviviruses from the virus replication and assembly perspective, emphasizing the interplay between viral non-structural proteins and host pathways that are hijacked for their advantage. Highlighting interaction pathways, including innate immunity, intracellular movement, and membrane modification, emphasizes the need for rigorous and targeted antiviral research and development against these re-emerging viruses.
Collapse
Affiliation(s)
- Meghan K. Donaldson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Levi A. Zanders
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Li Z, Yang B, Ding Y, Meng J, Hu J, Zhou X, Liu L, Wu Z, Yang S. Insights into a class of natural eugenol and its optimized derivatives as potential tobacco mosaic virus helicase inhibitors by structure-based virtual screening. Int J Biol Macromol 2023; 248:125892. [PMID: 37473893 DOI: 10.1016/j.ijbiomac.2023.125892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Plant diseases caused by malignant and refractory phytopathogenic viruses have considerably restricted crop yields and quality. To date, drug design targeting functional proteins or enzymes of viruses is an efficient and viable strategy to guide the development of new pesticides. Herein, a series of novel eugenol derivatives targeting the tobacco mosaic virus (TMV) helicase have been designed using structure-based virtual screening (SBVS). Structure-activity relationship indicated that 2 t displayed the most powerful bonding capability (Kd = 0.2 μM) along with brilliant TMV helicase ATPase inhibitory potency (IC50 = 141.9 μM) and applausive anti-TMV capability (EC50 = 315.7 μg/mL), ostentatiously outperforming that of commercial Acyclovir (Kd = 23.0 μM, IC50 = 183.7 μM) and Ribavirin (EC50 = 624.3 μg/mL). Molecular dynamics simulations and docking suggested ligand 2 t was stable and bound in the active pocket of the TMV helicase by multiple interactions. Given these superior properties, eugenol-based derivatives could be considered as the novel potential plant viral helicase inhibitors. Furthermore, this effective and feasible SBVS strategy established a valuable screening platform for helicase-targeted drug development.
Collapse
Affiliation(s)
- Zhenxing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Binxin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinhong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Wang DP, Wang MY, Li YM, Shu W, Cui W, Jiang FY, Zhou X, Wang WM, Cao JM. Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design. Cell Biosci 2022; 12:44. [PMID: 35428322 PMCID: PMC9012436 DOI: 10.1186/s13578-022-00777-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/26/2022] [Indexed: 11/19/2022] Open
Abstract
Background The Ilheus virus (ILHV) is an encephalitis associated arthropod-borne flavivirus. It was first identified in Ilheus City in the northeast Brazil before spreading to a wider geographic range. No specific vaccines or drugs are currently available for the treatment of ILHV infections. The ILHV helicase, like other flavivirus helicases, possesses 5ʹ-triphosphatase activity. This allows it to perform ATP hydrolysis to generate energy as well as sustain double-stranded RNA’s unwinding during ILHV genome replication. Thus, ILHV helicase is an ideal target for inhibitor design. Results We determined the crystal structure of the ILHV helicase at 1.75-Å resolution. We then conducted molecular docking of ATP-Mn2+ to the ILHV helicase. Comparisons with related flavivirus helicases indicated that both the NTP and the RNA-ILHV helicase binding sites were conserved across intra-genus species. This suggested that ILHV helicase adopts an identical mode in recognizing ATP/Mn2+. However, the P-loop in the active site showed a distinctive conformation; reflecting a different local structural rearrangement. ILHV helicase enzymatic activity was also characterized. This was found to be relatively lower than that of the DENV, ZIKV, MVE, and ALSV helicases. Our structure-guided mutagenesis revealed that R26A, E110A, and Q280A greatly reduced the ATPase activities. Moreover, we docked two small molecule inhibitors of DENV helicase (ST-610 and suramin) to the ILHV helicase and found that these two molecules had the potential to inhibit the activity of ILHV helicase as well. Conclusion High-resolution ILHV helicase structural analysis demonstrates the key amino acids of ATPase activities and could be useful for the design of inhibitors targeting the helicase of ILHV. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00777-8.
Collapse
|
5
|
Anindita PD, Halbeisen M, Řeha D, Tuma R, Franta Z. Mechanistic insight into the RNA stimulated-ATPase activity of tick-borne encephalitis virus helicase. J Biol Chem 2022; 298:102383. [PMID: 35987382 PMCID: PMC9490040 DOI: 10.1016/j.jbc.2022.102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/05/2022] Open
Abstract
The helicase domain of nonstructural protein 3 (NS3H) unwinds the double-stranded RNA replication intermediate in an ATP-dependent manner during the flavivirus life cycle. While the ATP hydrolysis mechanism of Dengue and Zika viruses NS3H has been extensively studied, little is known in the case of the tick-borne encephalitis virus NS3H. We demonstrate that ssRNA binds with nanomolar affinity to NS3H and strongly stimulates the ATP hydrolysis cycle, whereas ssDNA binds only weakly and inhibits ATPase activity in a noncompetitive manner. Thus, NS3H is an RNA-specific helicase, whereas DNA might act as an allosteric inhibitor. Using modeling, we explored plausible allosteric mechanisms by which ssDNA inhibits the ATPase via nonspecific binding in the vicinity of the active site and ATP repositioning. We captured several structural snapshots of key ATP hydrolysis stages using X-ray crystallography. One intermediate, in which the inorganic phosphate and ADP remained trapped inside the ATPase site after hydrolysis, suggests that inorganic phosphate release is the rate-limiting step. Using structure-guided modeling and molecular dynamics simulation, we identified putative RNA-binding residues and observed that the opening and closing of the ATP-binding site modulates RNA affinity. Site-directed mutagenesis of the conserved RNA-binding residues revealed that the allosteric activation of ATPase activity is primarily communicated via an arginine residue in domain 1. In summary, we characterized conformational changes associated with modulating RNA affinity and mapped allosteric communication between RNA-binding groove and ATPase site of tick-borne encephalitis virus helicase.
Collapse
Affiliation(s)
| | - Marco Halbeisen
- Department of Chemistry, Faculty of Science, University of South Bohemia, Czech Republic
| | - David Řeha
- Department of Chemistry, Faculty of Science, University of South Bohemia, Czech Republic
| | - Roman Tuma
- Department of Chemistry, Faculty of Science, University of South Bohemia, Czech Republic
| | - Zdenek Franta
- Department of Chemistry, Faculty of Science, University of South Bohemia, Czech Republic.
| |
Collapse
|