1
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zang P, Yang C, Lei H, Guo Q, Wang W, Shao J. Ghrelin regulates the proliferation and apoptosis of high glucose-induced islet cells through the PI3K-Akt signaling pathway. Cell Biol Int 2023; 47:768-775. [PMID: 36718083 DOI: 10.1002/cbin.11981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 02/01/2023]
Abstract
Ghrelin may have therapeutic value in mitigating insulin resistance and type 2 diabetes, based on which we further explore the action mechanism of ghrelin on islet cells in this research. In the course of experiments, MIN6 cells were induced by glucose and then treated with acylated or unacylated ghrelin. The effects of ghrelin on the viability, proliferation, apoptosis, and insulin release of high glucose-induced islet cells were detected by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Meanwhile, cells were treated with LY294002 to explore whether and how the inhibited phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway participated in the internal mechanism of ghrelin-regulating islet cells. Western blotting was performed to quantify the expression levels of Bcl-2, Bax, Cleaved caspase-3, PI3K, and AKT. As a result, ghrelin alleviated high glucose-induced suppression of viability and proliferation and promotion on apoptosis of MIN6 cells. Ghrelin also attenuated the inhibitory effects of high glucose on expression levels of PI3K-Akt signaling axis-related proteins and insulin release in MIN6 cells. Besides, ghrelin weakened the impacts of high glucose on boosting MIN6 cell apoptosis and hindering proliferation through the PI3K-Akt signaling axis. Collectively, ghrelin regulates the proliferation and apoptosis of high glucose-induced islet cells through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Cuihua Yang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Haiyan Lei
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qingyu Guo
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Mao X, Zhou J, Kong L, Zhu L, Yang D, Zhang Z. A peptide encoded by lncRNA MIR7-3 host gene (MIR7-3HG) alleviates dexamethasone-induced dysfunction in pancreatic β-cells through the PI3K/AKT signaling pathway. Biochem Biophys Res Commun 2023; 647:62-71. [PMID: 36731335 DOI: 10.1016/j.bbrc.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/26/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Dysfunction of pancreatic β-cells induced by glucocorticoids contributes to diabetes mellitus development. Long noncoding RNAs (lncRNAs) have been recognized to contain short open reading frames (ORFs) that can be translated into functional small peptides. Here, we investigated whether the short peptide encoded by the lncRNA MIR7-3 host gene (MIR7-3HG) can affect dexamethasone (DEX)-induced β-cell dysfunction. METHODS Bioinformatics analysis was used for selection of MIR7-3HG and prediction of its protein encoding potential. The small peptide was identified by a western blot method. The cell-permeable TAT was fused into MIR7-3HG ORF to produce the cell-permeable fusion peptide (TAT-MIR7-3HG-ORF). The effects of TAT-MIR7-3HG-ORF on DEX-induced β-cell dysfunction were evaluated by examining cell viability, apoptosis, insulin secretion, and reactive oxygen species (ROS) generation. RESULTS DEX induced β-TC6 cell dysfunction by impairing cell viability, insulin secretion and promoting cell apoptosis and ROS generation. The MIR7-3HG ORF could encode a 125-amino-acid-long short peptide. TAT-MIR7-3HG-ORF effectively transduced into β-TC6 cells and attenuated DEX-induced dysfunction in β-TC6 cells. Moreover, transduced TAT-MIR7-3HG-ORF reversed DEX-mediated inhibition of the activation of the PI3K/AKT signaling pathway. The inhibitor of the PI3K/AKT pathway partially abolished the alleviative effect of transduced TAT-MIR7-3HG-ORF on DEX-induced β-TC6 cell dysfunction. CONCLUSION The lncRNA MIR7-3HG encodes a short peptide, which can protect pancreatic β-cells from DEX-induced dysfunction by activating the PI3K/AKT pathway. Our study broadens the diversity and breadth of lncRNAs in human disorders.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China
| | - Jinliang Zhou
- Department of Hip Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, 471000, China
| | - Limin Kong
- Xinxiang Medical University, Xinxiang, Henan, 453003, China; The Sixth People's Hospital of Zhengzhou, Zhengzhou, Henan, 450000, China
| | - Li Zhu
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Desheng Yang
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China.
| | - Zhiyu Zhang
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
4
|
Bai D, Sun Y, Li Q, Li H, Liang Y, Xu X, Hao J. Leonurine attenuates OVA-induced asthma via p38 MAPK/NF-κB signaling pathway. Int Immunopharmacol 2023; 114:109483. [PMID: 36463697 DOI: 10.1016/j.intimp.2022.109483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022]
Abstract
Leonurine (Leo) is a natural alkaloid extracted from Herba leonuri, which has many biological activities. However, whether leonurine has a protective effect on asthma remains unknown. The purpose of this study was to investigate the protective effect of leonurine on asthma. We evaluated its therapeutic effect and related signal transduction in LPS-induced RAW264.7 cells and OVA-induced asthmatic mice. In addition, we used network pharmacology, molecular docking and molecular dynamics simulation to verify the experimental results. In LPS-induced RAW 264.7 cells, leonurine significantly reduced the production of TNF-α and IL-6, andinhibited the activation of p38 MAPK/NF-κB signaling pathway. In OVA-induced asthmatic mice, leonurine decreased the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF), particularly neutrophils and eosinophils. Leonurine also reduced the contents of IL-4, IL-5, IL-13 in the BALF and OVA-IgE in the serum. Leonurine remarkly improved OVA-induced inflammatory cell infiltration and significantly inhibited mucus overproduction. In addition, leonurine inhibited the activation of p38 MAPK/NF-κB signaling pathway in the lung tissues of asthmatic mice. Network pharmacology suggested that p38 MAPKα was a potential target of leonurine in the treatment of asthma. Molecular docking and molecular dynamics simulations indicated that leonurine could stably bind to p38 MAPKα protein. In summary, leonurine attenuated asthma by regulating p38 MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Donghui Bai
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yujie Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qiong Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Haihua Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuerun Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiejie Hao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
5
|
Higgs JA, Quinn AP, Seely KD, Richards Z, Mortensen SP, Crandall CS, Brooks AE. Pathophysiological Link between Insulin Resistance and Adrenal Incidentalomas. Int J Mol Sci 2022; 23:ijms23084340. [PMID: 35457158 PMCID: PMC9032410 DOI: 10.3390/ijms23084340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022] Open
Abstract
Adrenal incidentalomas are incidentally discovered adrenal masses greater than one centimeter in diameter. An association between insulin resistance and adrenal incidentalomas has been established. However, the pathophysiological link between these two conditions remains incompletely characterized. This review examines the literature on the interrelationship between insulin resistance and adrenal masses, their subtypes, and related pathophysiology. Some studies show that functional and non-functional adrenal masses elicit systemic insulin resistance, whereas others conclude the inverse. Insulin resistance, hyperinsulinemia, and the anabolic effects on adrenal gland tissue, which have insulin and insulin-like growth factor-1 receptors, offer possible pathophysiological links. Conversely, autonomous adrenal cortisol secretion generates visceral fat accumulation and insulin resistance. Further investigation into the mechanisms and timing of these two pathologies as they relate to one another is needed and could be valuable in the prevention, detection, and treatment of both conditions.
Collapse
Affiliation(s)
- Jordan A. Higgs
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Alyssa P. Quinn
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
- Correspondence:
| | - Zeke Richards
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Shad P. Mortensen
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Cody S. Crandall
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Amanda E. Brooks
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA;
| |
Collapse
|
6
|
Zhang G, Wang L. Leonurine: A compound with the potential to prevent acute lung injury. Exp Ther Med 2022; 23:358. [PMID: 35493428 PMCID: PMC9019771 DOI: 10.3892/etm.2022.11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022] Open
Abstract
Sepsis is an intense immune response to infection that contributes to the pathophysiological process of acute lung injury (ALI). Inflammation and oxidative stress serve an important role in the development of ALI. Leonurine (LEO) is a natural phenolic alkaloid extracted from Leonurus cardiaca, which possesses anti-inflammatory and antioxidative properties. Therefore, the aim of the present study was to explore the effect of LEO on sepsis-induced ALI and to investigate its underlying mechanism. MTT and Cell Counting Kit-8 assays were performed to measure cell viability. The levels of reactive oxygen species, lactate dehydrogenase and malondialdehyde, as well as the activity of superoxidase dismutase, were quantified using commercial assay kits. The expression levels of specific inflammatory cytokines were measured by using ELISA. In addition, western blotting was employed to assess the expression levels of cytokines, including TNF-α, IL-6, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1. The findings demonstrated that LEO increased the viability of lipopolysaccharide (LPS)-stimulated BEAS-2B human lung epithelial cells in a dose-dependent manner. Additionally, LEO suppressed LPS-induced oxidative stress and inflammatory cytokine release in BEAS-2B cells. Treatment with Nrf2 inhibitor reversed the effects of LEO treatment on LPS-induced oxidative stress and inflammatory response in BEAS-2B cells. Taken together, the data of the present study indicated that LEO attenuated LPS-induced ALI through the inhibition of oxidative stress and inflammation regulated by the Nrf2 signaling pathway. Therefore, LEO may be a novel and effective agent for the prevention of sepsis-induced ALI.
Collapse
Affiliation(s)
- Guoying Zhang
- Department of Pain Rehabilitation, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, Shandong 266071, P.R. China
| | - Lanfei Wang
- Intensive Care Unit, Xinchang People's Hospital, Shaoxing, Zhejiang 312500, P.R. China
| |
Collapse
|
7
|
Elseady WS, Abd Ellatif RA, Estfanous RS, Emam MN, Keshk WA. New insight on the role of liraglutide in alleviating dexamethasone-induced pancreatic cytotoxicity via improving redox status, autophagy flux, and PI3K/Akt/Nrf2 signaling. Can J Physiol Pharmacol 2021; 99:1217-1225. [PMID: 34197718 DOI: 10.1139/cjpp-2021-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic glucocorticoids therapy is commonly complicated by steroid diabetes, although the underlying mechanisms are still elusive. Liraglutide, a glucagon-like peptide-1, was initially found to induce glycemic control and recently it was found to have many pleotropic effects; however, its role in pancreas remains unknown. The present study aims to estimate the protective role of liraglutide on dexamethasone-induced pancreatic cytotoxicity and hyperglycemia, highlighting the possible underlying biochemical, molecular, and cellular mechanisms. Twenty-eight male Wistar rats were involved in this study and were randomly divided into four groups. Group III and IV were treated with 1 mg/kg dexamethasone daily for 10 days. Group II and IV were treated with liraglutide in a dose of 0.8 mg/kg per day for 2 weeks. Pancreatic caspase-9, nuclear factor erythroid 2-related factor 2 (Nrf2), phospho-protein kinase-B (pAkt), and sequestrome 1 (p62) levels were assessed by immunoassay. Moreover, phosphoinositide 3-kinase (PI3K) expression by real-time PCR, microtubule-associated protein light chain 3 (LC3B) expression by immunohistochemistry, glycemic status, β-cell function by homoeostasis model assessment (HOMA) β index, and pancreatic redox status were assessed. Liraglutide improved blood glucose level, β-cell function, pancreatic caspase-9 level, redox status, and autophagy. Additionally, it increased pancreatic PI3K, pAkt, and Nrf2 levels. Moreover, preservation of pancreatic histological and the ultrastructural morphological features of β- and α-cells were observed. In conclusion, liraglutide protected against dexamethasone-induced pancreatic injury and hyperglycemia and decelerated the progression towards steroid diabetes via activating PI3K/Akt/Nrf2 signaling and autophagy flux pathways.
Collapse
Affiliation(s)
- Walaa S Elseady
- Department of Anatomy, Faculty of Medicine, Tanta University, Egypt
| | | | | | - Marwa N Emam
- Department of Physiology, Faculty of Medicine, Tanta University, Egypt
| | - Walaa A Keshk
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
8
|
Yiming Z, Zhaoyi L, Jing L, Jinliang W, Zhiqiang S, Guangliang S, Shu L. Cadmium induces the thymus apoptosis of pigs through ROS-dependent PTEN/PI3K/AKT signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39982-39992. [PMID: 33765263 DOI: 10.1007/s11356-021-13517-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a transition metal that is toxic to living organisms in the environment and endangers living organisms. To explore whether Cd induces apoptosis in pig thymus and its possible mechanism, the role Cd induction of the PTEN/PI3K/Akt pathway in apoptosis of thymus cells was studied in pigs. We found that Cd exposure (the feed is treated with Cd) significantly increased Cd accumulation in the thymus of pigs. The TUNEL assay confirmed the typical apoptotic characteristics of thymus in Cd group. Moreover, in the Cd group, the activities of antioxidant indices decreased significantly, while the levels of oxidative stress indexes increased significantly, and the mRNA levels of GSH, CAT, Gpx1, GST, SOD1, and SOD2 decreased obviously. Moreover, the mRNA and protein levels of PTEN/PI3K/AKT and apoptosis-related genes were detected by qPCR and western blotting. The results show that the expressions of PI3K and AKT decreased, while the expression of PTEN increased, indicating that pathway activated. With the PTEN/PI3K/AKT pathway regulating, Bcl-2 expression decreased. Conversely, the mRNA and protein expression of apoptosis-related genes were up-regulated. In conclusion, accumulation of Cd in the pigs caused oxidative damage to immune tissues. In addition, Cd-induced oxidative stress activates the PTEN/PI3K/AKT pathway, inducing apoptosis in the thymus of pigs.
Collapse
Affiliation(s)
- Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lan Jing
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150000, China
| | - Wang Jinliang
- Shandong Binzhou Anim Sci & Vet Med Acad, Binzhou, 256600, People's Republic of China
| | - Shen Zhiqiang
- Shandong Binzhou Anim Sci & Vet Med Acad, Binzhou, 256600, People's Republic of China
| | - Shi Guangliang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|