1
|
Zhang L, Zhou E, Liu C, Tian X, Xue B, Zhang K, Luo B. Avian influenza and gut microbiome in poultry and humans: A "One Health" perspective. FUNDAMENTAL RESEARCH 2024; 4:455-462. [PMID: 38933214 PMCID: PMC11197557 DOI: 10.1016/j.fmre.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 06/28/2024] Open
Abstract
A gradual increase in avian influenza outbreaks has been found in recent years. It is highly possible to trigger the next human pandemic due to the characteristics of antigenic drift and antigenic shift in avian influenza virus (AIV). Although great improvements in understanding influenza viruses and the associated diseases have been unraveled, our knowledge of how these viruses impact the gut microbiome of both poultry and humans, as well as the underlying mechanisms, is still improving. The "One Health" approach shows better vitality in monitoring and mitigating the risk of avian influenza, which requires a multi-sectoral effort and highlights the interconnection of human health with environmental sustainability and animal health. Therefore, monitoring the gut microbiome may serve as a sentinel for protecting the common health of the environment, animals, and humans. This review summarizes the interactions between AIV infection and the gut microbiome of poultry and humans and their potential mechanisms. With the presented suggestions, we hope to address the current major challenges in the surveillance and prevention of microbiome-related avian influenza with the "One Health" approach.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
- Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China
| |
Collapse
|
2
|
Al-Shuhaib MBS, Alam S, Khan SA, Al-Shuhaib JMB, Chen YK, M Alshabrmi F. Hemagglutinin 3 and 8 can be the most efficient influenza subtypes for human host invasion; a comparative in silico approach. J Biomol Struct Dyn 2023:1-19. [PMID: 37965722 DOI: 10.1080/07391102.2023.2280674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
The severity of the influenza virus infection is largely determined by its ability to invade the human host receptor. This critical step is conducted by utilizing hemagglutinin (HA) due to its binding with sialic acid 2,6 (SA). Though 18 subtypes (H1-H18) of HA have been identified, the most efficient one for conducting the host entry has not yet been resolved. This study aims to assess the severity of infections for HA variants by conducting a comparative docking of H1-H18 with the human SA receptor. Eighteen viral 3D structures were retrieved, minimized, and optimized for docking with human SA. In all retrieved structures, five conserved amino acid residues were selected for docking with human SA. Special protein grids were prepared by locating these five residues in the 18 selected subtypes. Results showed that H3 and H8 exerted the highest standard precision and extra precision docking scores, and the highest binding affinities with the human SA, respectively. Phylogenetic analyses confirmed the actual positioning of the selected 3D structures and showed these docked structures belonged to their usual classes due to the extremely close distances found in each docked subtype compared with its corresponding non-docked structures. H8-SA showed slightly better RMSD and SASA values than H3-SA, while H3-SIA showed more favourable radius of gyration scores than H8-SIA in the majority of the simulation period. Due to the highest affinity of binding of H3 and H8 with the human receptor, special caution should be exercised regarding any possible outbreak mediated by these subtypes in human populations. However, it is important to acknowledge a limitation inherent to the computational approach; it may hold relative rather than absolute significance. Further research is needed to deepen our understanding of the intricate interplay between HA variants and the host receptor, taking into account the broader context of viral infection dynamics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sarfaraz Alam
- Tunneling Group Biotechnology Centre, Gliwice, Poland
| | | | | | - Yan-Kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. Viruses 2022; 14:v14092074. [PMID: 36146881 PMCID: PMC9505320 DOI: 10.3390/v14092074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.
Collapse
|
4
|
Rapid emergence of a PB2 D701N substitution during adaptation of an H9N2 avian influenza virus in mice. Arch Virol 2022; 167:2299-2303. [PMID: 35920981 DOI: 10.1007/s00705-022-05536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
H9N2 avian influenza viruses (AIVs) have been isolated frequently from multiple avian species and, occasionally, from humans. To explore the potential molecular basis of cross-species transmission of H9N2 AIVs, an H9N2 AIV (A/chicken/Zhejiang/221/2016) was serially passaged in mouse lung. The results showed that the mouse-adapted H9N2 virus exhibited higher virulence and replicated more efficiently in mouse lung and liver. Whole-genome sequencing showed an amino acid substitution, D701N, in the PB2 protein, which is likely associated with the increased replicative ability of H9N2 virus in mice. The rapid emergence of adaptive substitutions indicates the necessity of continuous monitoring of H9N2 virus in poultry.
Collapse
|
5
|
RNA-Seq Analysis of Influenza A Virus-Induced Transcriptional Changes in Mice Lung and Its Possible Implications for the Virus Pathogenicity in Mice. Viruses 2021; 13:v13102031. [PMID: 34696461 PMCID: PMC8538690 DOI: 10.3390/v13102031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
The influenza A virus (IAV) is an important cause of respiratory disease worldwide. It is well known that alveolar epithelial cells are the target cells for the IAV, but there is relatively limited knowledge regarding the role of macrophages during IAV infection. Here, we aimed to analyze transcriptome differences in mouse lungs and macrophage (RAW264.7) cell lines infected with either A/California/04/2009 H1N1 (CA09) or A/chicken/SD/56/2015 H9N2 (SD56) using deep sequencing. The uniquely differentially expressed genes (UDEGs) were analyzed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases; the results showed that the lungs infected with the two different viruses had different enrichments of pathways and terms. Interestingly, CA09 virus infection in mice was mostly involved with genes related to the extracellular matrix (ECM), while the most significant differences after SD56 infection in mice were in immune-related genes. Gene set enrichment analysis (GSEA) of RAW264.7 cells revealed that regulation of the cell cycle was of great significance after CA09 infection, whereas the regulation of the immune response was most enriched after SD56 infection, which was consistent with analysis results in the lung. Similar results were obtained from weighted gene co-expression network analysis (WGCNA), where cell cycle regulation was extensively activated in RAW264.7 macrophages infected with the CA09 virus. Disorder of the cell cycle is likely to affect their normal immune regulation, which may be an important factor leading to their different prognoses. These results provide insight into the mechanism of the CA09 virus that caused a pandemic and explain the different reactivities of monocytes/macrophages infected by H9N2 and H1N1 IAV subtypes.
Collapse
|