1
|
Chen L, Li Q, Ma S, Wang B. α-Ketoglutarate promotes autophagic activity under a peri-implant condition to enhance osseointegration of dental implant in rats with osteoporosis. Connect Tissue Res 2025; 66:1-9. [PMID: 39718506 DOI: 10.1080/03008207.2024.2442675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
AIM We aimed to investigate whether α-ketoglutarate (AKG) can promote autophagic activity under a peri-implant condition to enhance the osseointegration of dental implant in rats with osteoporosis (OP). METHODS Con, Model and AKG groups were established for the random allocation of thirty rats (n = 10). Their bone metabolism indicators were measured. The peri-implant bone morphology was detected by toluidine blue staining, the peri-implant bone tissue healing was detected, and the implant torque was measured. RESULTS In comparison to the Con group, the bone metabolism indicators [bone volume/tissue volume ratio (BV/TV), trabecular number (Tb.N), and osseointegration index (OI)], bone-implant contact (BIC) rate, bone mass in the cancellous area, dislocation torque, protein and mRNA expressions of bone morphogenetic protein-2 (BMP-2), RUNX2 and Beclin1, and LC3II/LC3I ratio in bone tissues decreased significantly in the Model group, with a significant enlargement of trabecular space (Tb.Sp) (p < 0.05). In comparison with the Model group, the AKG group had significant increases in Tb.N, BV/TV, OI, BIC rate, bone mass in the cancellous area, dislocation torque, mRNA plus protein expressions of BMP-2, Runt-related transcription factor 2 and Beclin1, and LC3II/light chain 3I ratio in bone tissues, in addition to a significant reduction of Tb.Sp (p < 0.05). CONCLUSIONS AKG may relieve the bone metabolism disorders and enhance the osteogenic differentiation and osseointegration of implants in OP rats by promoting peri-implant autophagy.
Collapse
Affiliation(s)
- Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qisen Li
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengnan Ma
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Bohua Wang
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Liao Y, Xu J, Zheng Z, Fu R, Zhang X, Gan S, Yang S, Hou C, Xu HHK, Chen W. Novel Nonthermal Atmospheric Plasma Irradiation of Titanium Implants Promotes Osteogenic Effect in Osteoporotic Conditions. ACS Biomater Sci Eng 2024; 10:3255-3267. [PMID: 38684056 DOI: 10.1021/acsbiomaterials.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Osteoporosis is a metabolic disease characterized by bone density and trabecular bone loss. Bone loss may affect dental implant osseointegration in patients with osteoporosis. To promote implant osseointegration in osteoporotic patients, we further used a nonthermal atmospheric plasma (NTAP) treatment device previously developed by our research group. After the titanium implant (Ti) is placed into the device, the working gas flow and the electrode switches are turned on, and the treatment is completed in 30 s. Previous studies showed that this NTAP device can remove carbon contamination from the implant surface, increase the hydroxyl groups, and improve its wettability to promote osseointegration in normal conditions. In this study, we demonstrated the tremendous osteogenic enhancement effect of NTAP-Ti in osteoporotic conditions in rats for the first time. Compared to Ti, the proliferative potential of osteoporotic bone marrow mesenchymal stem cells on NTAP-Ti increased by 180% at 1 day (P = 0.004), while their osteogenic differentiation increased by 149% at 14 days (P < 0.001). In addition, the results indicated that NTAP-Ti significantly improved osseointegration in osteoporotic rats in vivo. Compared to the Ti, the bone volume fraction (BV/TV) and trabecular number (Tb.N) values of NTAP-Ti in osteoporotic rats, respectively, increased by 18% (P < 0.001) and 25% (P = 0.007) at 6 weeks and the trabecular separation (Tb.Sp) value decreased by 26% (P = 0.02) at 6 weeks. In conclusion, this study proved a novel NTAP irradiation titanium implant that can significantly promote osseointegration in osteoporotic conditions.
Collapse
Affiliation(s)
- Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyuan Zhang
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, Maryland 21201, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review. Front Mol Biosci 2024; 11:1362338. [PMID: 38690295 PMCID: PMC11058977 DOI: 10.3389/fmolb.2024.1362338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Craniofacial reconstruction faces many challenges, including high complexity, strong specificity, severe injury, irregular and complex wounds, and high risk of bleeding. Traditionally, the "gold standard" for treating craniofacial bone defects has been tissue transplantation, which involves the transplantation of bone, cartilage, skin, and other tissues from other parts of the body. However, the shape of craniofacial bone and cartilage structures varies greatly and is distinctly different from ordinary long bones. Craniofacial bones originate from the neural crest, while long bones originate from the mesoderm. These factors contribute to the poor effectiveness of tissue transplantation in repairing craniofacial defects. Autologous mesenchymal stem cell transplantation exhibits excellent pluripotency, low immunogenicity, and minimally invasive properties, and is considered a potential alternative to tissue transplantation for treating craniofacial defects. Researchers have found that both craniofacial-specific mesenchymal stem cells and mesenchymal stem cells from other parts of the body have significant effects on the restoration and reconstruction of craniofacial bones, cartilage, wounds, and adipose tissue. In addition, the continuous development and application of tissue engineering technology provide new ideas for craniofacial repair. With the continuous exploration of mesenchymal stem cells by researchers and the continuous development of tissue engineering technology, the use of autologous mesenchymal stem cell transplantation for craniofacial reconstruction has gradually been accepted and promoted. This article will review the applications of various types of mesenchymal stem cells and related tissue engineering in craniofacial repair and reconstruction.
Collapse
Affiliation(s)
| | | | | | - En Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
6
|
Ma Y, Wang S, Wang H, Chen X, Shuai Y, Wang H, Mao Y, He F. Mesenchymal stem cells and dental implant osseointegration during aging: from mechanisms to therapy. Stem Cell Res Ther 2023; 14:382. [PMID: 38124153 PMCID: PMC10734190 DOI: 10.1186/s13287-023-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Dental implants are widely used to replace missing teeth, providing patients with unparalleled levels of effectiveness, convenience, and affordability. The biological basis for the clinical success of dental implants is osseointegration. Bone aging is a high-risk factor for the reduced osseointegration and survival rates of dental implants. In aged individuals, mesenchymal stem cells (MSCs) in the bone marrow show imbalanced differentiation with a reduction in osteogenesis and an increase in adipogenesis. This leads to impaired osseointegration and implant failure. This review focuses on the molecular mechanisms underlying the dysfunctional differentiation of aged MSCs, which primarily include autophagy, transcription factors, extracellular vesicle secretion, signaling pathways, epigenetic modifications, microRNAs, and oxidative stress. Furthermore, this review addresses the pathological changes in MSCs that affect osseointegration and discusses potential therapeutic interventions to enhance osseointegration by manipulating the mechanisms underlying MSC aging.
Collapse
Affiliation(s)
- Yang Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyu Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yi Shuai
- Nanjing Jinling Hospital: East Region Military Command General Hospital, Nanjing, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Yingjie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Hammad Uddin MK, Khan Sadiq MS, Ahmed A, Khan M, Maniar T, Mateen SM, Saba B, Kashif SM, Usman S, Najeeb S, Khurshid Z, Zafar MS. Applications of Metformin in Dentistry-A review. J Taibah Univ Med Sci 2023; 18:1299-1310. [PMID: 37275952 PMCID: PMC10239065 DOI: 10.1016/j.jtumed.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Metformin is a versatile drug with numerous medical uses. It is known primarily as an anti-hyperglycemic drug that has become the main oral blood-glucose-lowering medication for managing type 2 diabetes mellitus globally. Its use has been reported in a variety of oral conditions and dentistry in general. Recent clinical trials have indicated the effectiveness of adjunct topical application of metformin in improving the periodontal parameters of patients with diabetes and periodontitis. Additionally, studies have suggested that metformin stimulates odontogenic differentiation and mineral synthesis of stem cells in the tooth pulp. Metformin also stimulates osteoblast proliferation, decreases osteoclast activity and exerts regenerative effects on periodontal bone, thus making it a viable candidate for periodontal regeneration. Metformin monotherapy significantly enhances osseointegration of endosseous implants and has been reported to have anti-cancer effects on oral squamous cell carcinoma by impeding tumor progression. Animal studies have indicated that metformin improves orthodontic tooth movement and resists orthodontic appliance corrosion. This narrative review aims to provide a current summary of research highlighting the prospective uses of metformin in dentistry.
Collapse
Affiliation(s)
- Muhammad Khawaja Hammad Uddin
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- School of Dental Care Professionals (SDCP), Dow University of Health Sciences Karachi, Sindh, Pakistan
| | - Muhammad Shahrukh Khan Sadiq
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Ashfaq Ahmed
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Mariam Khan
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Tooba Maniar
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Syeda Mamoona Mateen
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
| | - Bilquees Saba
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of Medicine, Ziauddin Medical College, Ziauddin University, Karachi, Sindh, Pakistan
| | - Syed Muhammad Kashif
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of General Medicine, Civil Hospital, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Shumaila Usman
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of Molecular Medicine, Ziauddin Medical College, Ziauddin University, Karachi, Sindh, Pakistan
| | - Shariq Najeeb
- Evidentia Dental Outcomes Research, Calgary, Alberta, Canada
- Schulich Dentistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C, Canada
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, King Faisal University, Hofuf, Al-Ahsa, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawara, 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Krishnakumar G, Koppu S, Dev JN, Songa VM, Buggapati L, Mandrachalam R. Clinical efficacy of 1% metformin gel around conventionally placed dental implants: A 9-month follow-up study. J Indian Soc Periodontol 2023; 27:626-635. [PMID: 38434514 PMCID: PMC10906785 DOI: 10.4103/jisp.jisp_534_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/28/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Aim The study aimed to compare the clinical and radiographic outcomes of bone volume, density, and crestal bone levels in conventionally placed dental implants with and without local application of 1% metformin (MF) gel using cone-beam computed tomography (CBCT) at 9 months. Materials and Methods Twenty implants were placed in 18 individuals, randomly divided into 2 groups where Group A received a local application of 1% MF gel along with implant placement. In contrast, Group B received implant placement alone. After thorough clinical examination and preoperative CBCTs, implants were placed under aseptic conditions. Patients were recalled at 3 and 9 months after surgery. Implants were functionally loaded by the end of 3rd month. Soft-tissue parameters such as modified plaque index and modified sulcular bleeding index were recorded along with CBCT evaluation to assess the crestal bone loss, bone density measurement, and bone volume, postoperatively. Fisher's extract test, independent and paired t-test, and Bonferroni analysis were used to determine statistical significance with P ≤ 0.05. Results There was no discernible difference between the groups regarding soft-tissue parameters, bone density, and crestal bone levels. However, comparing bone volume between the test and control groups at 9 months was statistically significant. The test group with 1% MF gel showed increased bone volume around the implant. Conclusion The data obtained were strong enough to suggest that 1% MF gel administered locally can increase peri-implant bone volume, possibly due to its additional property favoring osteoblastic stimulation and proliferation.
Collapse
Affiliation(s)
- Govardhani Krishnakumar
- Department of Periodontology, Government Dental College and Hospital, Vijayawada, Andhra Pradesh, India
| | - Sitamahalakshmi Koppu
- Department of Periodontology, Kamineni Institute of Dental Science and Research, Nalgonda, Telangana, India
| | - Jampani Narendra Dev
- Department of Periodontology, Government Dental College and Hospital, Vijayawada, Andhra Pradesh, India
| | - Vajra Madhuri Songa
- Department of Periodontology, Government Dental College and Hospital, Vijayawada, Andhra Pradesh, India
| | - Lahari Buggapati
- Department of Periodontology, Government Dental College and Hospital, Vijayawada, Andhra Pradesh, India
| | - Radhika Mandrachalam
- Department of Periodontology, JKKN Dental College and Hospital, Erode, Tamil Nadu, India
| |
Collapse
|
9
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
10
|
Hong CY, Lin SK, Wang HW, Shun CT, Yang CN, Lai EHH, Cheng SJ, Chen MH, Yang H, Lin HY, Wu FY, Kok SH. Metformin Reduces Bone Resorption in Apical Periodontitis Through Regulation of Osteoblast and Osteoclast Differentiation. J Endod 2023; 49:1129-1137. [PMID: 37454872 DOI: 10.1016/j.joen.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION We have previously demonstrated that auxiliary metformin therapy promotes healing of apical periodontitis. Here we aimed to investigate the effects of metformin on osteoblast differentiation and osteoclast formation in cultured cells and rat apical periodontitis. METHODS Murine pre-osteoblasts MC3T3-E1 and macrophages RAW264.7 were cultured under hypoxia (2% oxygen) or normoxia (21% oxygen) and stimulated with receptor activator of nuclear factor-κB ligand (RANKL) when indicated. Metformin was added to the cultures to evaluate its anti-hypoxic effects. Expressions of osteoblast differentiation regulator runt-related transcription factor 2 (RUNX2), RANKL, and osteoclast marker tartrate-resistant acid phosphatase (TRAP) were assessed by Western blot. Apical periodontitis was induced in mandibular first molars of 10 Sprague-Dawley rats. Root canal therapy with or without metformin supplement was performed. Periapical bone resorption was measured by micro-computed tomography. Immunohistochemistry was used to examine RUNX2, RANKL, and TRAP expressions. RESULTS Hypoxia suppressed RUNX2 expression and enhanced RANKL synthesis in pre-osteoblasts. TRAP production increased in macrophages after hypoxia and/or RANKL stimulation. Metformin reversed hypoxia-induced RUNX2 suppression and RANKL synthesis in pre-osteoblasts. Metformin also inhibited hypoxia and RANKL-enhanced TRAP synthesis in macrophages. Intracanal metformin diminished bone loss in rat apical periodontitis. Comparing with vehicle control, cells lining bone surfaces in metformin-treated lesions had significantly stronger expression of RUNX2 and decreased synthesis of RANKL and TRAP. CONCLUSIONS Alleviation of bone resorption by intracanal metformin was associated with enhanced osteoblast differentiation and diminished osteoclast formation in rat apical periodontitis. Our results endorsed the role of metformin as an effective medicament for inflammatory bone diseases.
Collapse
Affiliation(s)
- Chi-Yuan Hong
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Eddie Hsiang-Hua Lai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mu-Hsiung Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang-Yu Wu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Ma C, Yu R, Li J, Chao J, Liu P. Targeting proteostasis network in osteoporosis: Pathological mechanisms and therapeutic implications. Ageing Res Rev 2023; 90:102024. [PMID: 37532006 DOI: 10.1016/j.arr.2023.102024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
As the most common bone disease, osteoporosis (OP) increases bone fragility and makes patients more vulnerable to the threat of osteoporotic fractures. With the ageing population in today's society, OP has become a huge and growing public health problem. Unfortunately, the clear pathogenesis of OP is still under exploration, and effective interventions are still scarce. Therefore, exploring new targets for pharmacological interventions to develop promising therapeutic drugs for OP is of great clinical value. Previous studies have shown that normal bone remodeling depends on proteostasis, whereas loss of proteostasis during ageing leads to the dysfunctional proteostasis network (PN) that fails to maintain bone homeostasis. Nevertheless, only a few studies have revealed the pathophysiological relationship between bone metabolism and a single component of PN, yet the role of PN as a whole in the pathogenesis of OP is still under investigation. This review comprehensively summarized the role of PN in the pathogenesis of OP and further discussed the potential of PN as innovative drug targets for the therapy of OP.
Collapse
Affiliation(s)
- Cong Ma
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ronghui Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiashuo Chao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
12
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Osmanthus Fragrans Loaded NIPAAM Hydrogel Promotes Osteogenic Differentiation of MC3T3-E1. Gels 2022; 8:gels8100659. [PMID: 36286160 PMCID: PMC9601630 DOI: 10.3390/gels8100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
There is an urgent need to find long-acting, natural osteogenesis-promoting drug systems. In this study, first the potential targets and mechanism of osmanthus fragrans (O. fragrans) extract in regulating osteogenic differentiation based on autophagy were analyzed by network pharmacology and molecular docking. Then, osmanthus fragrans was extracted using the ethanol reflux method and an osmanthus fragrans extract loaded Poly N-isopropylacrylamide (OF/NIPAAM) hydrogel was prepared by electron beam radiation. The chemical components of the osmanthus fragrans extract and the microstructure of OF/NIPAAM hydrogels were characterized by ultraviolet-visible spectrophotometry (UV-Vis) and X-ray diffraction (XRD), respectively. Mouse embryonic osteoblast precursor cells MC3T3-E1 were cultured with different concentrations of OF/NIPAAM hydrogel to discover cell proliferation activity by CCK-8 assay. Alkaline phosphatase (ALP) staining and alizarin red staining were used to observe the differentiation and calcification. Through experimental exploration, we found that a total of 11 targets were predicted, which are TP53, CASP3, SIRT1, etc., and osmanthus fragrans had good binding activity to TP53. In vitro, except for proliferation promotion, OF/NIPAAM hydrogel enhanced ALP activity and formation of mineralized nodules of MC3T3-E1 cells at a concentration equal to or less than 62.5 μg/mL (p < 0.05). The addition of autophagy inhibitor 3-methyladenine (3-MA) reduced ALP activity and mineralized nodule formation.
Collapse
|
14
|
Dong K, Zhou WJ, Liu ZH. Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: an in vitro and in vivo study. J Periodontal Implant Sci 2022; 53:54-68. [PMID: 36468474 PMCID: PMC9943706 DOI: 10.5051/jpis.2106240312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of this study was to determine whether metformin (MF) could alleviate the expresssion of reactive oxygen species (ROS) and improve the osteogenic ability of bone marrow mesenchymal stem cells derived from diabetic rats (drBMSCs) in vitro, and to evaluate the effect of MF on the ectopic osteogenesis of drBMSCs in a nude mouse model in vivo. METHODS BMSCs were extracted from normal and diabetic rats. In vitro, a cell viability assay (Cell Counting Kit-8), tests of alkaline phosphatase (ALP) activity, and western blot analysis were first used to determine the cell proliferation and osteogenic differentiation of drBMSCs that were subjected to treatment with different concentrations of MF (0, 50, 100, 200, 500 μM). The cells were then divided into 5 groups: (1) normal rat BMSCs (the BMSCs derived from normal rats group), (2) the drBMSCs group, (3) the drBMSCs + Mito-TEMPO (10 μM, ROS scavenger) group, (4) the drBMSCs + MF (200 μM) group, and (5) the drBMSCs + MF (200 μM) + H2O2 (50 μM, ROS activator) group. Intracellular ROS detection, a senescence-associated β-galactosidase assay, ALP staining, alizarin red staining, western blotting, and immunofluorescence assays were performed to determine the effects of MF on oxidative stress and osteogenic differentiation in drBMSCs. In vivo, the effect of MF on the ectopic osteogenesis of drBMSCs was evaluated in a nude mouse model. RESULTS MF effectively reduced ROS levels in drBMSCs. The cell proliferation, ALP activity, mineral deposition, and osteogenic-related protein expression of drBMSCs were demonstrably higher in the MF-treated group than in the non-MF-treated group. H2O2 inhibited the effects of MF. In addition, ectopic osteogenesis was significantly increased in drBMSCs treated with MF. CONCLUSIONS MF promoted the proliferation and osteogenic differentiation of drBMSCs by inhibiting the oxidative stress induced by diabetes and enhenced the ectopic bone formation of drBMSCs in nude mice.
Collapse
Affiliation(s)
- Kai Dong
- School and Hospital of Stomatology, Shandong University, Jinan, China.,Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China
| | - Wen-Juan Zhou
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China
| | - Zhong-Hao Liu
- School and Hospital of Stomatology, Shandong University, Jinan, China.,Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China.
| |
Collapse
|
15
|
Patel V, Sadiq MS, Najeeb S, Khurshid Z, Zafar MS, Heboyan A. Effects of metformin on the bioactivity and osseointegration of dental implants: A systematic review. J Taibah Univ Med Sci 2022; 18:196-206. [PMID: 36398019 PMCID: PMC9643507 DOI: 10.1016/j.jtumed.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/18/2022] Open
Abstract
Dental implants are prosthetic devices that are surgically placed in direct contact with the jawbone to support intra-oral functions and esthetics. Diabetes mellitus may contribute to peri-implant bone loss. During the last few years, there have been attempts to reduce this bone loss and improve the survival rate of implants. Metformin, an anti-diabetic drug known for its osteogenic properties, is thought to prevent peri-implant bone loss in diabetic patients. Although several studies have been conducted to study metformin's effect on diabetic and non-diabetic study models, no systematic review has analyzed and summarized these studies critically. Therefore, the objectives of this systematic review were to summarize the outcomes of these studies and critically appraise them. Seven studies were included in this systematic review. Four studies used only animal models, two used both animal and cell culture models, and one used only cell culture studies. The general characteristics and outcomes of the included studies were summarized, and Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were used to assess the quality of the animal studies. In vitro studies indicate that metformin may induce stem cells to undergo osteoblastic differentiation to produce a higher amount of bone and may also improve osseointegration. Nevertheless, several studies had potential sources of bias. Therefore, it is recommended that emphasis be placed on increasing the quality of future animal studies and human trials to determine the effects of metformin on the osseointegration of dental implants. Future studies are needed with adequate follow-up to evaluate the efficacy of metformin in improving the osseointegration of dental implants.
Collapse
|
16
|
Ma Y, Qiu S, Zhou R. Osteoporosis in Patients With Respiratory Diseases. Front Physiol 2022; 13:939253. [PMID: 35903070 PMCID: PMC9315364 DOI: 10.3389/fphys.2022.939253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change, environmental pollution, and virus epidemics have sharply increased the number of patients suffering from respiratory diseases in recent years. Prolonged periods of illness and drug use increase the occurrence of complications in these patients. Osteoporosis is the common bone metabolism disease with respiratory disturbance, which affects prognosis and increases mortality of patients. The problem of osteoporosis in patients with respiratory diseases needs more attention. In this review, we concluded the characteristics of osteoporosis in some respiratory diseases including COPD, asthma, COVID-19, tuberculosis, and lung cancer. We revealed that hypoxia was the common pathogenesis of osteoporosis secondary to respiratory diseases, with malnutrition and corticosteroid abuse driving the progression of osteoporosis. Hypoxia-induced ROS accumulation and activated HIF-1α lead to attenuated osteogenesis and enhanced osteoclastogenesis in patients with respiratory diseases. Tuberculosis and cancer also invaded bone tissue and reduced bone strength by direct infiltration. For the treatment of osteoporosis in respiratory patients, oral-optimized bisphosphonates were the best treatment modality. Vitamin D was a necessary supplement, both for calcium absorption in osteogenesis and for improvement of respiratory lesions. Reasonable adjustment of the dose and course of corticosteroids according to the etiology and condition of patients is beneficial to prevent the occurrence and development of osteoporosis. Additionally, HIF-1α was a potential target for the treatment of osteoporosis in respiratory patients, which could be activated under hypoxia condition and involved in the process of bone remodeling.
Collapse
Affiliation(s)
- Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Renyi Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Renyi Zhou,
| |
Collapse
|
17
|
Liang C, Liu X, Liu C, Xu Y, Geng W, Li J. Integrin α10 regulates adhesion, migration, and osteogenic differentiation of alveolar bone marrow mesenchymal stem cells in type 2 diabetic patients who underwent dental implant surgery. Bioengineered 2022; 13:13252-13268. [PMID: 35635091 PMCID: PMC9275886 DOI: 10.1080/21655979.2022.2079254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Changying Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yifan Xu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022; 9:842800. [PMID: 35620712 PMCID: PMC9127390 DOI: 10.3389/fmed.2022.842800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Song Y, Wu Z, Zhao P. The Function of Metformin in Aging-Related Musculoskeletal Disorders. Front Pharmacol 2022; 13:865524. [PMID: 35392559 PMCID: PMC8982084 DOI: 10.3389/fphar.2022.865524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind’s desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Lycopene Improves Bone Quality and Regulates AGE/RAGE/NF-кB Signaling Pathway in High-Fat Diet-Induced Obese Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3697067. [PMID: 35222796 PMCID: PMC8872668 DOI: 10.1155/2022/3697067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/09/2022] [Accepted: 01/28/2022] [Indexed: 12/29/2022]
Abstract
Objective. This study was aimed at examining the effects of lycopene on bone metabolism in high-fat diet (HFD)- induced obese mice and to identify the potential underlying mechanisms. Methods. Mice were fed a HFD for 12 weeks and then continue with or without lycopene intervention (15 mg/kg) for additional 10 weeks. The effects of lycopene on blood glucose and lipid metabolism, as well as serum levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined by biochemical assays. Bone histomorphological features and osteoclast activity were assessed by hematoxylin/eosin and tartrate-resistant acid phosphatase staining. Bone microstructure at the proximal tibial metaphysis and diaphysis was determined by microcomputed tomography. Tibial biomechanical strength and material profiles were measured by a three-point bending assay and Fourier transform infrared spectroscopy. Protein expressions involved in the AGE/RAGE/NF-кB signaling pathway were determined by western blot and/or immunohistochemical staining. Results. Lycopene consumption reduced body weight gain and improved blood glucose and lipid metabolism in HFD-induced obese mice. In addition, lycopene treatment preserved bone biomechanical strength, material profiles, and microarchitecture in obese mice. Moreover, these alterations were associated with an increase in serum levels of T-AOC and SOD, and a decline in serum levels of MDA, as well as a reduction of AGEs, RAGE, cathepsin K, and p-NF-кBp65 and NF-кBp65 expressions in the femurs and tibias of obese mice. Conclusion. Lycopene may improve bone quality through its antioxidant properties, which may be linked with the regulation of the AGE/RAGE/NF-кB signaling pathway in obese mice. These results suggest that lycopene consumption may be beneficial for the management of obesity-induced osteoporosis.
Collapse
|
21
|
Chen Y, Zhou Y, Lin J, Zhang S. Challenges to Improve Bone Healing Under Diabetic Conditions. Front Endocrinol (Lausanne) 2022; 13:861878. [PMID: 35418946 PMCID: PMC8996179 DOI: 10.3389/fendo.2022.861878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) can affect bone metabolism and the bone microenvironment, resulting in impaired bone healing. The mechanisms include oxidative stress, inflammation, the production of advanced glycation end products (AGEs), etc. Improving bone healing in diabetic patients has important clinical significance in promoting fracture healing and improving bone integration. In this paper, we reviewed the methods of improving bone healing under diabetic conditions, including drug therapy, biochemical cues, hyperbaric oxygen, ultrasound, laser and pulsed electromagnetic fields, although most studies are in preclinical stages. Meanwhile, we also pointed out some shortcomings and challenges, hoping to provide a potential therapeutic strategy for accelerating bone healing in patients with diabetes.
Collapse
Affiliation(s)
- Yiling Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Lin, ; Shiwen Zhang,
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Lin, ; Shiwen Zhang,
| |
Collapse
|
22
|
Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacol Transl Sci 2021; 4:1747-1770. [PMID: 34927008 DOI: 10.1021/acsptsci.1c00167] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran
| | - Mahan Ala
- School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran
| |
Collapse
|
23
|
Leser JM, Harriot A, Buck HV, Ward CW, Stains JP. Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:782848. [PMID: 36004321 PMCID: PMC9396756 DOI: 10.3389/fresc.2021.782848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022]
Abstract
The decline in the mass and function of bone and muscle is an inevitable consequence of healthy aging with early onset and accelerated decline in those with chronic disease. Termed osteo-sarcopenia, this condition predisposes the decreased activity, falls, low-energy fractures, and increased risk of co-morbid disease that leads to musculoskeletal frailty. The biology of osteo-sarcopenia is most understood in the context of systemic neuro-endocrine and immune/inflammatory alterations that drive inflammation, oxidative stress, reduced autophagy, and cellular senescence in the bone and muscle. Here we integrate these concepts to our growing understanding of how bone and muscle senses, responds and adapts to mechanical load. We propose that age-related alterations in cytoskeletal mechanics alter load-sensing and mechano-transduction in bone osteocytes and muscle fibers which underscores osteo-sarcopenia. Lastly, we examine the evidence for exercise as an effective countermeasure to osteo-sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Li Y, He Y, Chen G, Huang Z, Yi C, Zhang X, Deng F, Yu D. Selenomethionine protects oxidative-stress-damaged bone-marrow-derived mesenchymal stem cells via an antioxidant effect and the PTEN/PI3K/AKT pathway. Exp Cell Res 2021; 408:112864. [PMID: 34626586 DOI: 10.1016/j.yexcr.2021.112864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022]
Abstract
Dental implant surgery is currently a routine therapy for the repair of missing dentition or dentition defects. Both clinical and basic research have elucidated that oxidative stress caused by the accumulation of reactive oxygen species (ROS) for various reasons impairs the process of osteointegration after dental implantation. Therefore, the osteogenic micro-environment must be ameliorated to decrease the damage caused by oxidative stress. Selenomethionine (SEMET) has been reported to play an important role in alleviating oxidative stress and accelerating cell viability and growth. However, it remains unclear whether it exerts protective effects on bone-marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress. In this study, we explored the influence of selenomethionine on the viability and osteogenic differentiation of BMSCs under oxidative stress and the underlying mechanisms. Results showed that 1 μM selenomethionine was the optimum concentration for BMSCs under H2O2 stimulation. H2O2-induced oxidative stress suppressed the viability and osteogenic differentiation of BMSCs, manifested by the increases in ROS production and cell apoptosis rates, and by the decrease of osteogenic differentiation-related markers. Notably, the aforementioned oxidative damage and osteogenic dysfunction induced by H2O2 were rescued by selenomethionine. Furthermore, we found that the PTEN expression level was suppressed and its downstream PI3K/AKT pathway was activated by selenomethionine. However, when PTEN was stimulated, the PI3K/AKT pathway was down-regulated, and the protective effects of selenomethionine on BMSC osteogenic differentiation diminished, while the inhibition of PTEN up-regulated the protective effects of selenomethionine. Together, these results revealed that selenomethionine could attenuate H2O2-induced BMSC dysfunction through an antioxidant effect, modulated via the PTEN/PI3K/AKT pathway, suggesting that selenomethionine is a promising antioxidant candidate for reducing oxidative stress during the process of dental implant osteointegration.
Collapse
Affiliation(s)
- Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Guanhui Chen
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China.
| |
Collapse
|
25
|
Zhang M, Yang B, Peng S, Xiao J. Metformin Rescues the Impaired Osteogenesis Differentiation Ability of Rat Adipose-Derived Stem Cells in High Glucose by Activating Autophagy. Stem Cells Dev 2021; 30:1017-1027. [PMID: 34486387 DOI: 10.1089/scd.2021.0181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The incidence and morbidity of diabetes osteoporosis (DOP) are increasing with each passing year. Patients with DOP have a higher risk of bone fracture and poor healing of bone defects, which make a poor quality of their life. Bone tissue engineering based on autologous adipose-derived stem cells (ASCs) transplantation develops as an effective technique to achieve tissue regeneration for patients with bone defects. With the purpose of promoting auto-ASCs transplantation, this research project explored the effect of metformin on the osteogenic differentiation of ASCs under a high-glucose culture environment. In this study, we found that 40 mM high glucose inhibited the physiological function of ASCs, including cell proliferation, migration, and osteogenic differentiation. Indicators of osteogenic differentiation were all downregulated by 40 mM high glucose, including alkaline phosphatase activity, runt-related transcription factor 2, and osteopontin gene expression, and Wnt signaling pathway. At the same time, the cell autophagy makers BECLIN1 and microtubule-associated protein 1 light chain 3 (LC3 I/II) were decreased. While 0.1 mM metformin upregulated the expression of BECLIN1 and LC3 I/II gene and inhibited the expression of mammalian target of rapamycin (mTOR) and GSK3β, it contributed to reverse the osteogenesis inhibition of ASCs caused by high glucose. When 3-methyladenine was used to block the activity of metformin, metformin could not exert its protective effect on ASCs. All the findings elaborated the regulatory mechanism of metformin in the high-glucose microenvironment to protect the osteogenic differentiation ability of ASCs. Metformin plays an active role in promoting the osteogenic differentiation of ASCs with DOP, and it may contribute to the application of ASCs transplantation for bone regeneration in DOP.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China.,Division of Oral Health Sciences, Department of Fixed Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bo Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
26
|
Wang L, Liang C, Lin X, Liu C, Li J. microRNA-491-5p regulates osteogenic differentiation of bone marrow stem cells in type 2 diabetes. Oral Dis 2021; 29:308-321. [PMID: 34618998 DOI: 10.1111/odi.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Osseointegration of oral implants has a low success rate in patients with type 2 diabetes. This is because of the inhibition of osteogenic differentiation in the jawbone marrow mesenchymal stem cells, in which the expression of microRNA(miR)-491-5p is significantly downregulated, as ascertained through gene chip screening. However, the underlying mechanisms are unclear. Here, we aimed to clarify the mechanisms involved in the influence of miR-491-5p on osteogenic differentiation. SUBJECTS AND METHODS Jawbone marrow mesenchymal stem cells were isolated from jawbones of patients with type 2 diabetes and subjected to bioinformatics and functional analyses. Osteogenesis experiments were conducted using the isolated cells and an in vivo model. RESULTS Knockdown and overexpression experiments revealed the positive effects of miR-491-5p expression on osteogenic differentiation in vivo and in vitro. Additionally, a dual-luciferase assay revealed that miR-491-5p targeted the SMAD/RUNX2 pathway by inhibiting the expression of epidermal growth factor receptor. CONCLUSIONS miR-491-5p is vital in osteogenic differentiation of jawbone mesenchymal stem cells; its downregulation in type 2 diabetes could be a major cause of decreased osteogenic differentiation. Regulation of miR-491-5p expression could improve osteogenic differentiation of jawbone mesenchymal stem cells in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Chao Liang
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Changying Liu
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Jun Li
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China.,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|