1
|
Le HT, Venturini C, Lubian AF, Bowring B, Iredell J, George J, Ahlenstiel G, Read SA. Differences in Phage Recognition and Immunogenicity Contribute to Divergent Human Immune Responses to Escherichia coli and Klebsiella pneumoniae Phages. Eur J Immunol 2025; 55:e202451543. [PMID: 40071703 PMCID: PMC11898580 DOI: 10.1002/eji.202451543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Bacteriophages (phages) are emerging as a viable adjunct to antibiotics for the treatment of multidrug-resistant (MDR) bacterial infections. While intravenous phage therapy has proven successful in many cases, clinical outcomes remain uncertain due to a limited understanding of host response to phages. In this study, we conducted a comprehensive examination of the interaction between clinical-grade phages used to treat MDR Escherichia coli and Klebsiella pneumoniae infections, and human peripheral blood immune cells. Using whole transcriptome as well as proteomic approaches, we identified a strong inflammatory response to E. coli phage vB_EcoM-JIPh_Ec70 (herein, JIPh_Ec70) that was absent upon exposure to K. pneumoniae phage JIPh_Kp127. We confirmed that JIPh_Ec70's DNA recognition by the STING pathway was principally responsible for the activation of NF-kB and the subsequent inflammatory response. We further show that monocytes and neutrophils play a dominant role in phage uptake, primarily through complement-mediated phagocytosis. Significant differences in complement-mediated phagocytosis of JIPh_Kp127 and JIPh_Ec70 were observed, suggesting that reduced recognition, phagocytosis, and immunogenicity all contribute to the significantly decreased response to JIPh_Kp127. Our findings contribute to the progress of our understanding of the innate immune response to therapeutic phages and offer potential insights into how to improve the safety and effectiveness of phage therapy.
Collapse
Affiliation(s)
- Huu Thanh Le
- Blacktown Clinical SchoolWestern Sydney UniversitySydneyNSWAustralia
- Storr Liver CentreWestmead Institute for Medical ResearchSydneyNSWAustralia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology (CIDM)Westmead Institute for Medical ResearchSydneyNSWAustralia
- Sydney School of Veterinary Science, Faculty of ScienceUniversity of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and Microbiology (CIDM)Westmead Institute for Medical ResearchSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology (CIDM)Westmead Institute for Medical ResearchSydneyNSWAustralia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology (CIDM)Westmead Institute for Medical ResearchSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jacob George
- Storr Liver CentreWestmead Institute for Medical ResearchSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Department of Hepatology and GastroenterologyWestmead HospitalSydneyNSWAustralia
| | - Golo Ahlenstiel
- Blacktown Clinical SchoolWestern Sydney UniversitySydneyNSWAustralia
- Storr Liver CentreWestmead Institute for Medical ResearchSydneyNSWAustralia
- Blacktown Mt Druitt HospitalSydneyNSWAustralia
| | - Scott A. Read
- Blacktown Clinical SchoolWestern Sydney UniversitySydneyNSWAustralia
- Storr Liver CentreWestmead Institute for Medical ResearchSydneyNSWAustralia
- Blacktown Mt Druitt HospitalSydneyNSWAustralia
| |
Collapse
|
2
|
Nishihara S, Nakamura N, Kawasaki K. High amphipathicity of α-helical peptides enhances unmethylated CpG DNA-induced activation of mouse macrophage-like RAW264.7 cells. Sci Rep 2024; 14:16274. [PMID: 39009614 PMCID: PMC11251158 DOI: 10.1038/s41598-024-67166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
The α-helical antimicrobial peptide Kn2-7 enhances the activation of mouse macrophage-like RAW264.7 induced by DNA containing unmethylated cytosine-guanine motifs (CpG DNA). This enhancement is related to increased cellular uptake of DNA by Kn2-7, but the relevant properties of Kn2-7 are unknown. Physicochemical property analysis revealed that Kn2-7 has high amphipathicity. In contrast, the α-helical antimicrobial peptide L5, which increases the cellular uptake of CpG DNA but does not enhance CpG DNA-induced activation, has low amphipathicity. Kn2-7 derivatives with decreased amphipathicity but the same amino acid composition as Kn2-7 did not enhance CpG DNA-induced activation. On the other hand, L5 derivatives with high amphipathicity but the same amino acid composition as L5 enhanced CpG DNA-induced activation. Cellular uptake of DNA was not increased by the L5 derivatives, indicating that high amphipathicity does not affect DNA uptake. Furthermore, α-helical peptides with reversed sequences relative to the Kn2-7 and L5 derivatives with high amphipathicity were synthesized. The reversed-sequence peptides, which had the same amphipathicity but different amino acid sequences from their counterparts, enhanced CpG DNA-induced activation. Taken together, these observations indicate that the high amphipathicity of α-helical peptides enhances the CpG DNA-induced activation of RAW264.7.
Collapse
Affiliation(s)
- Saeka Nishihara
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0395, Japan
| | - Nao Nakamura
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0395, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0395, Japan.
| |
Collapse
|
3
|
Li H, Niu J, Wang X, Niu M, Liao C. The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances. Pharmaceutics 2023; 15:2278. [PMID: 37765247 PMCID: PMC10535326 DOI: 10.3390/pharmaceutics15092278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel antimicrobial agents to replace antibiotics has become urgent due to the emergence of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs), widely distributed in all kingdoms of life, present strong antimicrobial activity against a variety of bacteria, fungi, parasites, and viruses. The potential of AMPs as new alternatives to antibiotics has gradually attracted considerable interest. In addition, AMPs exhibit strong anticancer potential as well as anti-inflammatory and immunomodulatory activity. Many studies have provided evidence that AMPs can recruit and activate immune cells, controlling inflammation. This review highlights the scientific literature focusing on evidence for the anti-inflammatory mechanisms of different AMPs in immune cells, including macrophages, monocytes, lymphocytes, mast cells, dendritic cells, neutrophils, and eosinophils. A variety of immunomodulatory characteristics, including the abilities to activate and differentiate immune cells, change the content and expression of inflammatory mediators, and regulate specific cellular functions and inflammation-related signaling pathways, are summarized and discussed in detail. This comprehensive review contributes to a better understanding of the role of AMPs in the regulation of the immune system and provides a reference for the use of AMPs as novel anti-inflammatory drugs for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Junhui Niu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China;
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| |
Collapse
|
4
|
Kelly G, Milligan JJ, Mastria EM, Kim S, Zelenetz SR, Dobbins J, Cai LY, Li X, Nair SK, Chilkoti A. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J Control Release 2022; 343:267-276. [PMID: 35077742 PMCID: PMC8960370 DOI: 10.1016/j.jconrel.2022.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
Biomaterial-based approaches for a combination of radiotherapy and immunotherapy can improve outcomes in metastatic cancer through local delivery of both therapeutic modalities to the primary tumor to control local tumor growth and distant metastases. This study describes an injectable depot for sustained intratumoral (i.t.) delivery of an iodine-131 (131I) radionuclide and a CpG oligodeoxynucleotide immunostimulant, driven by the thermally sensitive phase transition behavior of elastin-like polypeptides (ELPs). We synthesized and characterized an ELP with an oligolysine tail (ELP-K12) that forms an electrostatic complex with CpG for delivery from an ELP depot and evaluated the ability of the complex to enhance local and systemic tumor control as a monotherapy and in combination with 131I-ELP brachytherapy. I.t delivery of CpG from an ELP-K12 depot dramatically prolongs i.t. retention to more than 21 days as compared to soluble CpG that is only retained within the tumor for <24 h. ELP-K12 also enhances CpG delivery by increasing cellular uptake of CpG to generate greater toll-like receptor 9 (TLR9) activation than CpG alone. I.t. treatment with an ELP-K12/CpG depot slows primary tumor growth and reduces lung metastases in a poorly immunogenic 4 T1 syngeneic breast cancer model whereas i.t treatment of CpG alone has no significant effect on primary tumor growth or metastases. Notably, a combination of 131I-ELP brachytherapy and ELP-K12/CpG delivered i.t. inhibited 4 T1 tumor growth and strongly decreased the development of lung metastases, leading to a synergistic improvement in mouse survival. These preclinical results demonstrate that injectable ELP depots may provide a useful approach for the delivery of combination radio- and immuno-therapy to treat metastatic disease.
Collapse
Affiliation(s)
- Garrett Kelly
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Joshua J. Milligan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Eric M. Mastria
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Sarah Kim
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Stephanie R. Zelenetz
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Jarrett Dobbins
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Leon Y. Cai
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Smita K. Nair
- Department of Surgery, Duke University School of Medicine, 2301 Erwin Rd., DUMC Box 370, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA.
| |
Collapse
|
5
|
Mangmee S, Reamtong O, Kalambaheti T, Roytrakul S, Sonthayanon P. Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella. Molecules 2021; 26:molecules26154654. [PMID: 34361810 PMCID: PMC8348142 DOI: 10.3390/molecules26154654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides are promising molecules to address the global antibiotic resistance problem, however, optimization to achieve favorable potency and safety is required. Here, a peptide-template modification approach was employed to design physicochemical variants based on net charge, hydrophobicity, enantiomer, and terminal group. All variants of the scorpion venom peptide BmKn-2 with amphipathic α-helical cationic structure exhibited an increased antibacterial potency when evaluated against multidrug-resistant Salmonella isolates at a MIC range of 4–8 µM. They revealed antibiofilm activity in a dose-dependent manner. Sheep red blood cells were used to evaluate hemolytic and cell selectivity properties. Peptide Kn2-5R-NH2, dKn2-5R-NH2, and 2F-Kn2-5R-NH2 (variants with +6 charges carrying amidated C-terminus) showed stronger antibacterial activity than Kn2-5R (a variant with +5 charges bearing free-carboxyl group at C-terminus). Peptide dKn2-5R-NH2 (d-enantiomer) exhibited slightly weaker antibacterial activity with much less hemolytic activity (higher hemolytic concentration 50) than Kn2-5R-NH2 (l-enantiomer). Furthermore, peptide Kn2-5R with the least hydrophobicity had the lowest hemolytic activity and showed the highest specificity to Salmonella (the highest selectivity index). This study also explained the relationship of peptide physicochemical properties and bioactivities that would fulfill and accelerate progress in peptide antibiotic research and development.
Collapse
Affiliation(s)
- Suthee Mangmee
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.M.); (O.R.)
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.M.); (O.R.)
| | - Thareerat Kalambaheti
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand;
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.M.); (O.R.)
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: or ; Tel.: +66-2-354-9100 (ext. 1440)
| |
Collapse
|