1
|
Yang Y, Liu P, Zhou M, Yin L, Wang M, Liu T, Jiang X, Gao H. Small-molecule drugs of colorectal cancer: Current status and future directions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166880. [PMID: 37696461 DOI: 10.1016/j.bbadis.2023.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the world's fourth most deadly cancer. CRC, as a genetic susceptible disease, faces significant challenges in optimizing prognosis through optimal drug treatment modalities. In recent decades, the development of innovative small-molecule drugs is expected to provide targeted interventions that accurately address the different molecular characteristics of CRC. Although the clinical application of single-target drugs is limited by the heterogeneity and high metastasis of CRC, novel small-molecule drug treatment strategies such as dual/multiple-target drugs, drug repurposing, and combination therapies can help overcome these challenges and provide new insights for improving CRC treatment. In this review, we focus on the current status of a range of small molecule drugs that are being considered for CRC therapy, including single-target drugs, dual/multiple-target drugs, drug repurposing and combination strategies, which will pave the way for targeting CRC vulnerabilities with small-molecule drugs in future personalized treatment.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyang Zhou
- University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ting Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
2
|
Katagiri H, Yonezawa H, Shitamura S, Sugawara A, Kawano T, Maemondo M, Nishiya N. A Wnt/β-catenin signaling inhibitor, IMU1003, suppresses the emergence of osimertinib-resistant colonies from gefitinib-resistant non-small cell lung cancer cells. Biochem Biophys Res Commun 2023; 645:24-29. [PMID: 36669423 DOI: 10.1016/j.bbrc.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Drug resistance has become a challenge in effective longterm molecular targeted therapy. Longterm non-small cell lung cancer (NSCLC) treatments with the first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) shorten the effective duration of the third-generation EGFR-TKI, osimertinib, via genetic or epigenetic mechanisms in addition to the gatekeeper mutation T790M. This study reproduced this persistence in vitro using gefitinib-resistant NSCLC PC-9 cells (GR cells) and revealed that pharmacological nuclear localization inhibition of β-catenin suppressed the osimertinib resistance. Osimertinib effectively reduced GR cell survival but left significantly more resistant colonies than parental PC-9 cells. The nuclear fraction of β-catenin was enriched in GR cells during acquisition of osimertinib resistance. A chemical nuclear localization inhibitor of β-catenin, IMU1003, dramatically decreased the emergence of osimertinib-resistant colonies. Forced nuclear localization of β-catenin reduced IMU1003 efficacy. Thus, suppression of the nuclear β-catenin function may overcome the transgenerational EGFR-TKI-resistance.
Collapse
Affiliation(s)
- Hiroshi Katagiri
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Honami Yonezawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Sho Shitamura
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Aoi Sugawara
- Division of Medicinal and Organic Chemistry, Department of Pharmaceutical Sciences, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Tomikazu Kawano
- Division of Medicinal and Organic Chemistry, Department of Pharmaceutical Sciences, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Makoto Maemondo
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Naoyuki Nishiya
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| |
Collapse
|
3
|
Šeklić DS, Jovanović MM, Virijević KD, Grujić JN, Živanović MN, Marković SD. Pseudevernia furfuracea inhibits migration and invasion of colorectal carcinoma cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114758. [PMID: 34688797 DOI: 10.1016/j.jep.2021.114758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pseudevernia furfuracea (L.) Zopf is common lichen species, traditionally used worldwide in treating various medical conditions, among which are intestinal issues and cancer. Most studies are focused mainly on cytotoxic potential of lichens, whilst their antimigratory and antiinvasive properties are often disregarded. Migration and invasion of cancer cells are pivotal processes in cancer metastasis, wherein cancer cells are able to migrate individually or in form of a coherent mass. One of successful strategies in anticancer treatments is targeting Wnt/β-catenin signal pathway, that is aberrantly activated in colorectal carcinoma, as well as lowering level of migratory/invasive markers. AIM OF THE STUDY Present study aimed to show antimigratory/invasive potential of Pseudevernia furfuracea methanol extract on HCT-116 and SW-480 colorectal carcinoma cell lines and to elucidate possible mechanism of its action. MATERIALS AND METHODS Collective cell migration was assessed by Wound healing assay and single cell migration in real time by RTCA method. Analysis of anti- and promigratory protein expression was performed using immunofluorescent staining. Additionally, gene expression of antimigratory/promigratory and invasive (E-cadherin, β-catenin, N-cadherin, Vimentin, Snail and MMP-9) markers were investigated by qRT-PCR method. Concentration of MMP-9 was determined colorimetrically by ELISA test. RESULTS P. furfuracea extract was able to suppress both collective and single cancer cell migration, by inhibiting expression of promigratory/invasive markers and possibly re-establishing cell-cell adhesions. The present study indicates at P. furfuracea as effective antimigratory treatment, and HCT-116 cells were proved to be a more sensitive cell line to applied treatment. CONCLUSIONS This lichen species is a promising candidate for application in treatment of cancer in order to prevent metastasis.
Collapse
Affiliation(s)
- Dragana S Šeklić
- Department of Natural Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Serbia.
| | - Milena M Jovanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia.
| | - Katarina D Virijević
- Department of Natural Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Serbia.
| | - Jelena N Grujić
- Department of Natural Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Serbia.
| | - Marko N Živanović
- Department of Natural Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Serbia.
| | - Snežana D Marković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
4
|
Šeklić DS, Jovanović MM. Platismatia glauca-Lichen species with suppressive properties on migration and invasiveness of two different colorectal carcinoma cell lines. J Food Biochem 2022; 46:e14096. [PMID: 35102582 DOI: 10.1111/jfbc.14096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/12/2021] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Platismatia glauca is a popular lichen traditionally used as a spice and possesses significant anti-cancer potential, whose anti-migratory/anti-invasive properties were mostly disregarded. Migration/invasion of cancer cells is processed in cancer metastasis and targeting their markers is an important strategy in anti-cancer treatment. We examined the anti-migratory/anti-invasive properties of P. glauca extract on two colorectal carcinoma cell lines (HCT-116 and SW-480) and elucidated possible mechanisms underlying these properties. Cell migration was evaluated by wound healing and RTCA methods. Immunofluorescent assay was used for the analysis of protein, while qRT-PCR for gene expression of migratory/invasive markers. ELISA assay was applied for the determination of MMP-9 concentration. P. glauca extract inhibited the motility of tested cells, by reducing pro-migratory/pro-invasive markers and potentially retaining intercellular connections. Treatment showed cell-selective effects, and HCT-116 cells were more responsive. Our study presents important scientific novelty, thus these lichen properties should be furtherly examined regarding the amelioration of anti-cancer treatment. PRACTICAL APPLICATIONS: Based on the evidence we provided in the present study, we have demonstrated that lichen species Platismatia glauca possess important biological activity, which has not been sufficiently investigated so far. It is of great importance to explore its anti-cancer potential, not only from a cytotoxic point of view but especially anti-migratory and anti-invasive. Herein, we showed that this species expresses significant suppressive effects on migration and invasiveness of colorectal carcinoma cells. This tested lichen has the potential to be used as a natural complementary anti-cancer treatment, with special reference on the dose applied and type of carcinoma. Our study represents a significant novelty in the field of scientific investigation of lichens and natural products, and further detailed studies are needed on in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Dragana S Šeklić
- Department of Natural Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Milena M Jovanović
- Department for Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
5
|
Nishiya N, Yonezawa H. Domestication of chemicals attacking metazoan embryogenesis: identification of safe natural products modifying developmental signaling pathways in human. J Antibiot (Tokyo) 2021; 74:651-659. [PMID: 34381189 DOI: 10.1038/s41429-021-00461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Soil microorganisms are rich sources of bioactive natural products. Interspecies interactions are the cues of their production and refine biological activities. These interactions in natural environments include the interplay between microorganisms and Metazoans (animals), such as nematodes, insects, and ticks. Chemical intercellular communication modulators could exert ideal Metazoan-selective toxicity for defending microorganisms. Developmental signaling pathways, such as the Notch, TGF-beta, and Wnt pathways, are intercellular communication networks that contribute to the reproducible formation of complex higher-order Metazoan body structures. Natural modifiers of the developmental signaling pathway are attractive therapeutic seeds for carcinoma and sarcoma treatment. However, these fundamental signaling pathways also play indispensable physiological roles and their perturbation could lead to toxicity, such as defects in stem cell physiology and tissue regeneration processes. In this review, we introduce a screening system that selects developmental signaling inhibitors with wide therapeutic windows using zebrafish embryonic phenotypes and provide examples of microorganism-derived Wnt pathway inhibitors. Moreover, we discuss safety prospects of the developmental signaling inhibitors.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan.
| | - Honami Yonezawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| |
Collapse
|