1
|
Mochalova EN, Cherkasov VR, Sizikov AA, Litvinenko AV, Vorobeva TS, Norvillo NB, Gopanenko AV, Ivashchenko IA, Nikitin MP, Ivashchenko AA. Liposome-encapsulated aprotinin biodistribution in mice: Side-by-side comparison with free drug formulation. Biochem Biophys Res Commun 2024; 734:150636. [PMID: 39250873 DOI: 10.1016/j.bbrc.2024.150636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Injuries of the respiratory system caused by viral infections (e.g., by influenza virus, respiratory syncytial virus, metapneumovirus, or coronavirus) can lead to long-term complications or even life-threatening conditions. The challenges of treatment of such diseases have become particularly pronounced during the recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One promising drug is the anti-fibrinolytic and anti-inflammatory protease inhibitor aprotinin, which has demonstrated considerable inhibition of the replication of some viruses. Encapsulation of aprotinin in liposomes can significantly improve the effectiveness of the drug, however, the use of nanoparticles as carriers of aprotinin can radically change its biodistribution in the body. Here we show that the liposomal form of aprotinin accumulates more efficiently in the lungs, heart, and kidneys than the molecular form by side-by-side comparison of the ex vivo biodistribution of these two fluorescently labeled formulations in mice using bioimaging. In particular, we synthesized liposomes of different compositions and studied their accumulation in various organs and tissues. Direct comparison of the biodistributions of liposomal and free aprotinin showed that liposomes accumulated in the lungs 1.82 times more effectively, and in the heart and kidneys - 3.56 and 2.00 times, respectively. This suggests that the liposomal formulation exhibits a longer residence time in the target organ and, thus, has the potential for a longer therapeutic effect. The results reveal the great potential of the aprotinin-loaded liposomes for the treatment of respiratory system injuries and heart- and kidney-related complications of viral infections.
Collapse
Affiliation(s)
- Elizaveta N Mochalova
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia; Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991, Moscow, Russia
| | - Vladimir R Cherkasov
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991, Moscow, Russia
| | - Artem A Sizikov
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | | | - Tatiana S Vorobeva
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Natalia B Norvillo
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Alexander V Gopanenko
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia
| | - Ilya A Ivashchenko
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Maxim P Nikitin
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, 117997, Moscow, Russia; Moscow Center for Advanced Studies, 20 Kulakova St, 123592, Moscow, Russia.
| | | |
Collapse
|
2
|
Shen H, Lei Y, Xie W, Ma T, Bao L, Gao Q, Chen B, Dai B, Qin D. Bioactive peptides PDBSN improve mitochondrial function and suppression the oxidative stress in human adiposity cells. Adipocyte 2023:2278213. [PMID: 37942520 DOI: 10.1080/21623945.2023.2278213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction: Mitochondria are essential for generating cellular energy and are significant in the pathogenesis of obesity. Peptide PDBSN has been demonstrated to inhibit the adipogenic differentiation of adipocytes in vitro and improves metabolic homoeostasis in vivo. Therefore, in this study, we further investigated the effects of PDBSN on the morphology, synthesis, and function of adipocyte mitochondria. Methods: Human visceral and subcutaneous primary preadipocytes (HPA-v and HPA-s) were cultured into mature adipocytes. Intracellular triglyceride content was assessed using oil-red O staining and tissue triglyceride determination. Gene and protein levels associated with mitochondrial synthesis were detected using real-time quantitative polymerase chain reaction and western blotting. Mitochondrial membrane potentials and ROS were detected using fluorescent indicators. Morphological changes were observed by electron microscopy. Results: PDBSN significantly increased mitochondrial membrane potential (MMP), while decreasing intracellular triglyceride (TG) and intracellular reactive oxygen species (ROS) levels. On the other hand, the transcription and protein levels of genetic marker genes PGC1-α and MTFA were significantly up-regulated after PDBSN administration. Further studies showed that transcriptional and protein levels of mitochondrial fusion and fission genetic markers MFN1, MFN2, NRF1, and DRP1 increased. Conclusion: PDBSN significantly reduces intracellular TG and ROS levels and increases MMP. The maximum respiratory capacity in adults significantly increases after PDBSN administration, and ROS levels are significantly reduced. This suggests that PDBSN improves mitochondrial function to some extent, which not only provides an essential basis for the pathophysiology of obesity but also provides insights for the development of new drugs to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Huiping Shen
- Department of Pediatrics, Yixing People's Hospital, China
| | - Yong Lei
- Department of Pediatrics, Yixing People's Hospital, China
| | - Wen Xie
- Department of Pediatrics, Yixing People's Hospital, China
| | - Tieliang Ma
- Department of Pediatrics, Yixing People's Hospital, China
| | - Li Bao
- Department of Pediatrics, Yixing People's Hospital, China
| | - Qin Gao
- Department of Pediatrics, Yixing People's Hospital, China
| | - Bingyu Chen
- Department of Pediatrics, Yixing People's Hospital, China
| | - Biao Dai
- Department of Pediatrics, Yixing People's Hospital, China
| | - Dani Qin
- Department of Pediatrics, Yixing People's Hospital, China
| |
Collapse
|
3
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
4
|
Mukherjee S, Diéguez C, Fernø J, López M. Obesity wars: hypothalamic sEVs a new hope. Trends Mol Med 2023:S1471-4914(23)00088-6. [PMID: 37210227 DOI: 10.1016/j.molmed.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
There are currently several pharmacological therapies available for the treatment of obesity, targeting both the central nervous system (CNS) and peripheral tissues. In recent years, small extracellular vesicles (sEVs) have been shown to be involved in many pathophysiological conditions. Because of their special nanosized structure and contents, sEVs can activate receptors and trigger intracellular pathways in recipient cells. Notably, in addition to transferring molecules between cells, sEVs can also alter their phenotypic characteristics. The purpose of this review is to discuss how sEVs can be used as a CNS-targeted strategy for treating obesity. Furthermore, we will evaluate current findings, such as the sEV-mediated targeting of hypothalamic AMP-activated protein kinase (AMPK), and discuss how they can be translated into clinical application.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
5
|
Wang W, Yang W, Dai Y, Liu J, Chen ZY. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027889 DOI: 10.1021/acs.jafc.2c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The prevalence of diabetes mellitus and obesity is increasing worldwide. Bioactive peptides are naturally present in foods or in food-derived proteins. Recent research has shown that these bioactive peptides have an array of possible health benefits in the management of diabetes and obesity. First, this review will summarize the top-down and bottom-up production methods of the bioactive peptides from different protein sources. Second, the digestibility, bioavailability, and metabolic fate of the bioactive peptides are discussed. Last, the present review will discuss and explore the mechanisms by which these bioactive peptides help against obesity and diabetes based on in vitro and in vivo studies. Although several clinical studies have demonstrated that bioactive peptides are beneficial in alleviating diabetes and obesity, more double-blind randomized controlled trials are needed in the future. This review has provided novel insights into the potential of food-derived bioactive peptides as functional foods or nutraceuticals to manage obesity and diabetes.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yi Dai
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
6
|
Costa RODA, Passos TS, Silva EMDS, dos Santos NCS, Morais AHDA. Encapsulated Peptides and Proteins with an Effect on Satiety. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1166. [PMID: 37049259 PMCID: PMC10097199 DOI: 10.3390/nano13071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The world scenario has undergone a nutritional transition in which some countries have left the reality of malnutrition and now face an epidemic of excess body weight. Researchers have been looking for strategies to reverse this situation. Peptides and proteins stand out as promising molecules with anti-obesity action. However, oral administration and passage through the gastrointestinal tract face numerous physiological barriers that impair their bioactive function. Encapsulation aims to protect the active substance and modify the action, one possibility of potentiating anti-obesity activity. Research with encapsulated peptides and proteins has demonstrated improved stability, delivery, controlled release, and increased bioactivity. However, it is necessary to explore how proteins and peptides affect weight loss and satiety, can impact the nutritional status of obesity, and how encapsulation can enhance the bioactive effects of these molecules. This integrative review aimed to discuss how the encapsulation of protein molecules impacts the nutritional status of obesity. From the studies selected following pre-established criteria, it was possible to infer that the encapsulation of proteins and peptides can contribute to greater efficiency in reducing weight gain, changes in adipose tissue function, and lower hormone levels that modulate appetite and body weight in animals with obesity.
Collapse
Affiliation(s)
- Rafael O. de A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Thaís S. Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Eloyse Mikaelly de S. Silva
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | | | - Ana Heloneida de A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
7
|
Nanoparticles Containing Tamarind Isolate Protein Potentiate the Satiety without Promoting the Anti-Inflammatory Effect in a Preclinical Model of Diet-Induced Obesity. Foods 2022; 11:foods11213526. [PMID: 36360138 PMCID: PMC9658257 DOI: 10.3390/foods11213526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to evaluate the nanoparticles (ECW) containing tamarind trypsin inhibitor (TTI) concerning the storage effect under different conditions on antitrypsin activity and the bioactive potential in a preclinical model. ECW was exposed to different pH and temperatures to evaluate the interaction between TTI and its encapsulating agents, monitored by antitrypsin activity. Wistar rats (n = 25) with obesity induced by diet were divided into groups: untreated; treatment with nutritionally adequate diet; treatment with nutritionally adequate diet and ECW/12.5 mg/kg; treatment with ECW/12.5 mg/kg; and treatment with TTI/25 mg/kg. The groups were evaluated over ten days with regards to satiety, zoometric, biochemical, and inflammatory parameters, using ten times less TTI (2.5 mg/kg) contained in ECW. TTI was protected and encapsulated in ECW without showing residual inhibitory activity. Only at gastric pH did ECW show antitrypsin activity. At different temperatures, it showed high antitrypsin activity, similar to TTI. The animals treated with ECW had significantly reduced body weight variation (p < 0.05), and only TTI treatment reduced the inflammatory parameters significantly (p < 0.05). The study showed that by using lower concentrations of TTI in ECW it was possible to perceive promising effects with perspectives of use in functional products for managing obesity and its complications.
Collapse
|
8
|
Li J, Duan H, Liu Y, Wang L, Zhou X. Biomaterial-Based Therapeutic Strategies for Obesity and Its Comorbidities. Pharmaceutics 2022; 14:1445. [PMID: 35890340 PMCID: PMC9320151 DOI: 10.3390/pharmaceutics14071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a global public health issue that results in many health complications or comorbidities, including type 2 diabetes mellitus, cardiovascular disease, and fatty liver. Pharmacotherapy alone or combined with either lifestyle alteration or surgery represents the main modality to combat obesity and its complications. However, most anti-obesity drugs are limited by their bioavailability, target specificity, and potential toxic effects. Only a handful of drugs, including orlistat, liraglutide, and semaglutide, are currently approved for clinical obesity treatment. Thus, there is an urgent need for alternative treatment strategies. Based on the new revelation of the pathogenesis of obesity and the efforts toward the multi-disciplinary integration of materials, chemistry, biotechnology, and pharmacy, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. Herein, by analyzing the current situation and challenges of various new obesity treatment strategies such as small-molecule drugs, natural drugs, and biotechnology drugs, the advanced functions and prospects of biomaterials in obesity-targeted delivery, as well as their biological activities and applications in obesity treatment, are systematically summarized. Finally, based on the systematic analysis of biomaterial-based obesity therapeutic strategies, the future prospects and challenges in this field are proposed.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Hongli Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Yan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Lu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
9
|
The Functional Interplay between Gut Microbiota, Protein Hydrolysates/Bioactive Peptides, and Obesity: A Critical Review on the Study Advances. Antioxidants (Basel) 2022; 11:antiox11020333. [PMID: 35204214 PMCID: PMC8868115 DOI: 10.3390/antiox11020333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
Diet is an essential factor determining the ratio of pathogenic and beneficial gut microbiota. Hydrolysates and bioactive peptides have been described as crucial ingredients from food protein that potentially impact human health beyond their roles as nutrients. These compounds can exert benefits in the body, including modulation of the gut microbiota, and thus, they can reduce metabolic disorders. This review summarized studies on the interaction between hydrolysates/peptides, gut microbes, and obesity, focusing on how hydrolysates/peptides influence gut microbiota composition and function that improve body weight. Findings revealed that gut microbes could exert anti-obesity effects by controlling the host’s energy balance and food intake. They also exhibit activity against obesity-induced inflammation by changing the expression of inflammatory-related transcription factors. Protein hydrolysates/peptides can suppress the growth of pro-obesity gut bacteria but facilitate the proliferation of those with anti-obesity effects. The compounds provide growth factors to the beneficial gut bacteria and also improve their resistance against extreme pH. Hydrolysates/peptides are good candidates to target obesity and obesity-related complications. Thus, they can allow the development of novel strategies to fight incidences of obesity. Future studies are needed to understand absorption fate, utilization by gut microbes, and stability of hydrolysates/peptides in the gut under obesity.
Collapse
|
10
|
Zhang H, Liao X, Wu X, Shi C, Zhang Y, Yuan Y, Li W, Wang J, Liu Y. Iridium(III) complexes entrapped in liposomes trigger mitochondria-mediated apoptosis and GSDME-mediated pyroptosis. J Inorg Biochem 2022; 228:111706. [PMID: 35033830 DOI: 10.1016/j.jinorgbio.2021.111706] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
In this report, a new ligand TFBIP (TFBIP = 2-(4'-trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its three iridium (III) complexes [Ir(ppy)2(TFBIP)](PF6) (Ir1, ppy = 2-phenylpyridine), [Ir(bzq)2(TFBIP)](PF6) (Ir2, bzq = benzo[h]quinolone) and [Ir(piq)2(TFBIP)](PF6) (Ir3, piq = 1-phenylisoquinoline) were synthesized and characterized. The cytotoxicity in vitro of the complexes toward several cancer cells was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) methods. The complexes show no cytotoxicity (IC50 > 100 μM) against these cancer cells. To enhance anticancer activity, these complexes were trapped in liposomes to form Ir1Lipo, Ir2Lipo and Ir3Lipo. The liposomes Ir1Lipo, Ir2Lipo and Ir3Lipo exhibit high or moderate cytotoxic activity. In particular, Ir1Lipo can effectively inhibit the cell growth with a low IC50 value (< 10 μM) toward A549, HepG2, BEL-7402, B16, HeLa and SGC-7901 cells. Surprisingly, Ir1Lipo has no cytotoxic activity against the normal cell LO2 (IC50 > 100 μM). The apoptosis and pyroptosis were investigated. Ir3Lipo induces apoptosis with a high early apoptotic number of 37%. The reactive oxygen species (ROS) levels, mitochondrial permeability transition pore open and mitochondrial membrane potential were detected. The intracellular Ca2+ concentration and release of cytochrome c were investigated. The expression of Bcl-2 (B-cell lymphoma-2) family proteins was explored by western blot. The antitumor activity in vivo of Ir1Lipo was evaluated with an inhibitory rate of 53%.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaofei Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiawen Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Li Z, Wang S, He Y, Li Q, Gao G, Tong G. Regulation of Apelin-13 on Bcl-2 and Caspase-3 and Its Effects on Adipocyte Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1687919. [PMID: 34603462 PMCID: PMC8486539 DOI: 10.1155/2021/1687919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The effects of apelin-13 on the expression of Bcl-2 and caspase-3 factors and the apoptosis of adipocytes were studied at the cellular and animal levels. METHODS 3T3-L1 preadipocytes were cultured and grouped. The third-generation cells were added to the control DMSO solvent and amidation-modified apelin-13. The expression of Bcl-2 and caspase-3 were detected. The cell growth viability and cell apoptosis were detected. DOI model rats were established. The effects of apelin-13 on DOI rat biochemical indicators, the expression of Bcl-2, caspase-3, and cell apoptosis were investigated by injecting amidation-modified apelin-13 through the tail vein. RESULT In in vitro experiments, amidation-modified apelin-13 can significantly reduce the growth viability of adipocytes and the expression of Bcl-2, increase the expression of caspase-3, and promote the apoptosis of adipocytes. Animal experiments also show that apelin-13 modified by amidation can adjust the abnormal biochemical indicators of DOI rats, decrease the expression of Bcl-2 in adipose tissue, increase the expression of caspase-3, and promote the apoptosis of adipocytes. CONCLUSION Amidation of apelin-13 can promote fat cell apoptosis and reduce the incidence of obesity. The mechanism may be accomplished by inhibiting Bcl-2 and caspase-3 factors. This study helps us understand the effect of apelin-13 on fat cell apoptosis and hopes to provide a basis for the development of antiobesity drugs.
Collapse
Affiliation(s)
- Zhan Li
- Department of Cardiology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Sha Wang
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Yiwei He
- Department of Cardiology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Qiong Li
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Guoying Gao
- Department of Cardiology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Guoxiang Tong
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| |
Collapse
|
12
|
Wang S, Gao G, He Y, Li Q, Li Z, Tong G. Amidation-Modified Apelin-13 Regulates PPAR γ and Perilipin to Inhibit Adipogenic Differentiation and Promote Lipolysis. Bioinorg Chem Appl 2021; 2021:3594630. [PMID: 34054938 PMCID: PMC8123992 DOI: 10.1155/2021/3594630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
With the adjustment of human diet and lifestyle changes, the prevalence of obesity is increasing year by year. Obesity is closely related to the excessive accumulation of white adipose tissue (WAT), which can synthesize and secrete a variety of adipokines. Apelin is a biologically active peptide in the adipokines family. Past studies have shown that apelin plays an important regulatory role in the pathogenesis and pathophysiology of diseases such as the cardiovascular system, respiratory system, digestive system, nervous system, and endocrine system. Apelin is also closely related to diabetes and obesity. Therefore, we anticipate that apelin-13 has an effect on lipometabolism and intend to explore the effect of apelin-13 on lipometabolism at the cellular and animal levels. In in vitro experiments, amidation-modified apelin-13 can significantly reduce the lipid content; TG content; and the expression of PPARγ, perilipin mRNA, and protein in adipocytes. Animal experiments also show that amidation modification apelin-13 can improve the abnormal biochemical indicators of diet-induced obesity (DOI) rats and can reduce the average diameter of adipocytes in adipose tissue, the concentration of glycerol, and the expression of PPARγ and perilipin mRNA and protein. Our results show that apelin-13 can affect the metabolism of adipose tissue, inhibit adipogenic differentiation of adipocytes, promote lipolysis, and thereby improve obesity. The mechanism may be regulating the expression of PPARγ to inhibit adipogenic differentiation and regulating the expression of perilipin to promote lipolysis. This study helps us understand the role of apelin-13 in adipose tissue and provide a basis for the elucidation of the regulation mechanism of lipometabolism and the development of antiobesity drugs.
Collapse
Affiliation(s)
- Sha Wang
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| | - Guoying Gao
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Yiwei He
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Qiong Li
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Guoxiang Tong
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| |
Collapse
|
13
|
Singh BP, Aluko RE, Hati S, Solanki D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit Rev Food Sci Nutr 2021; 62:4593-4606. [PMID: 33506720 DOI: 10.1080/10408398.2021.1877109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lifestyle-related diseases constitute a major concern in the twenty-first century, with millions dying worldwide each year due to chosen lifestyles and associated complications such as obesity, type 2 diabetes, hypertension, and hypercholesterolemia. Although synthetic drugs have been shown to be quite effective in the treatment of these conditions, safety of these compounds remains a concern. Natural alternatives to drugs include food-derived peptides are now being explored for the prevention and treatment of lifestyle-related complications. Peptides are fragments nascent in the primary protein sequences and could impart health benefits beyond basic nutritional advantages. Evidence suggests that by controlling adipocyte differentiation and lipase activities, bioactive peptides may be able to prevent obesity. Bioactive peptides act as agents against type 2 diabetes because of their ability to inhibit enzymatic activities of DPP-IV, α-amylase, and α-glucosidase. Moreover, bioactive peptides can act as competitive inhibitors of angiotensin-converting enzyme, thus eliciting an antihypertensive effect. Bioactive peptides may have a hypocholesterolemic effect by inhibiting cholesterol metabolism pathways and cholesterol synthesis. This review addresses current knowledge of the impact of food-derived bioactive peptides on lifestyle diseases. In addition, future insights on the clinical trials, allergenicity, cytotoxicity, gastrointestinal stability, and regulatory approvals have also been considered.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Subrota Hati
- SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat, India
| | - Divyang Solanki
- SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|