1
|
Nectin-4 as Blood-Based Biomarker Enables Detection of Early Ovarian Cancer Stages. Cancers (Basel) 2022; 14:cancers14235867. [PMID: 36497350 PMCID: PMC9739558 DOI: 10.3390/cancers14235867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer is the third most common gynecological malignancy and has the highest mortality rate. Owing to unspecific symptoms, ovarian cancer is not detected until an advanced stage in about two-thirds of cases. Therefore, it is crucial to establish reliable biomarkers for the early stages to improve the patients’ prognosis. The aim of this study is to investigate whether the ADAM17 substrates Nectin-4, Heparin-binding EGF-like growth factor (HB-EGF) and Amphiregulin (AREG) could function as potential tumor markers for ovarian cancer. In this study a set of 231 sera consisting of 131 ovarian cancer patients and 100 healthy age-matched controls were assembled. Nectin-4, HB-EGF and AREG levels of preoperatively collected sera were determined by enzyme-linked immunosorbent assay (ELISA). Our analysis revealed that Nectin-4 and HB-EGF were significantly increased compared to the age-matched control group (p < 0.0001, p = 0.016). Strikingly, significantly higher Nectin-4 and HB-EGF levels were detected in early-stage FIGO I/II (p <0.001; p = 0.025) compared to healthy controls. Eighty-four percent (16/19) of patients with low Ca-125 levels showed increased Nectin-4 levels. Our study proposes Nectin-4 and HB-EGF as promising blood-based biomarkers for the detection of early stages of ovarian cancer patients that would not have been detected by Ca-125.
Collapse
|
2
|
Yang HJ, Lei YX, Wang J, Kong XZ, Liu JX, Gao YL. Tensor decomposition based on the potential low-rank and [Formula: see text]-shrinkage generalized threshold algorithm for analyzing cancer multiomics data. J Bioinform Comput Biol 2022; 20:2250002. [PMID: 35191362 DOI: 10.1142/s0219720022500020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tensor Robust Principal Component Analysis (TRPCA) has achieved promising results in the analysis of genomics data. However, the TRPCA model under the existing tensor singular value decomposition ([Formula: see text]-SVD) framework insufficiently extracts the potential low-rank structure of the data, resulting in suboptimal restored components. Simultaneously, the tensor nuclear norm (TNN) defined based on [Formula: see text]-SVD uses the same standard to handle various singular values. TNN ignores the difference of singular values, leading to the failure of the main information that needs to be well preserved. To preserve the heterogeneous structure in the low-rank information, we propose a novel TNN and extend it to the TRPCA model. Potential low-rank space may contain important information. We learn the low-rank structural information from the core tensor. The singular value space contains the association information between genes and cancers. The [Formula: see text]-shrinkage generalized threshold function is utilized to preserve the low-rank properties of larger singular values. The optimization problem is solved by the alternating direction method of the multiplier (ADMM) algorithm. Clustering and feature selection experiments are performed on the TCGA data set. The experimental results show that the proposed model is more promising than other state-of-the-art tensor decomposition methods.
Collapse
Affiliation(s)
- Hang-Jin Yang
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Yu-Xia Lei
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Juan Wang
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Xiang-Zhen Kong
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Ying-Lian Gao
- Qufu Normal University Library, Qufu Normal University, Rizhao, Shandong, P. R. China
| |
Collapse
|
3
|
Abstract
Macropinocytosis is a critical route of nutrient acquisition in pancreatic cancer cells. Constitutive macropinocytosis is promoted by mutant KRAS, which activates the PI3Kα lipid kinase and RAC1, to drive membrane ruffling, macropinosome uptake and processing. However, our recent study on the KRASG12R mutant indicated the presence of a KRAS-independent mode of macropinocytosis in pancreatic cancer cell lines, thereby increasing the complexity of this process. We found that KRASG12R-mutant cell lines promote macropinocytosis independent of KRAS activity using PI3Kγ and RAC1, highlighting the convergence of regulation on RAC signaling. While macropinocytosis has been proposed to be a therapeutic target for the treatment of pancreatic cancer, our studies have underscored how little we understand about the activation and regulation of this metabolic process. Therefore, this review seeks to highlight the differences in macropinocytosis regulation in the two cellular subtypes while also highlighting the features that make the KRASG12R mutant atypical.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Wang L, Xu T, Yang X, Liang Z, Zhang J, Li D, Chen Y, Ma G, Wang Y, Liang Y, Niu H. Immunosuppression Induced by Glutamine Deprivation Occurs via Activating PD-L1 Transcription in Bladder Cancer. Front Mol Biosci 2021; 8:687305. [PMID: 34805266 PMCID: PMC8602840 DOI: 10.3389/fmolb.2021.687305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Few studies have reported whether nutrients in the tumor microenvironment can regulate the expression of PD-L1. Since tumor cells are often situated in a low-glutamine environment, we investigated PD-L1 expression under glutamine deprivation in bladder cancer cells. PD-L1 expression and the activation of the EGFR/MEK/ERK/c-Jun signaling pathway under glutamine deprivation were investigated by qPCR, Western blot, and immunofluorescence analyses. C-Jun-mediated transcriptional regulation of the PD-L1 gene was assessed by ChIP. PD-L1 expression and activation of the EGFR/MEK/ERK/c-Jun signaling pathway were assessed in T24 cells, TCCSUP cells and BALB/c mice with or without glutamine supplementation. Additionally, the impact of PD-L1 expression under glutamine deprivation on the function of T cells was investigated by ELISA. The expression of PD-L1 and EGFR/MEK/ERK/c-Jun pathway activation were elevated by glutamine deprivation, and c-Jun was enriched in the enhancer region of PD-L1. The expression of PD-L1 was considerably impaired by inhibiting the EGFR/MEK/ERK/c-Jun pathway and was elevated by activating this signaling pathway. In addition, the elevated PD-L1 expression and MEK/ERK/c-Jun signaling pathway activation were reduced by glutamine supplementation in vitro and in vivo. PD-L1 upregulation by glutamine deprivation in bladder cancer cells could reduce IFN-γ production by T cells. The expression of PD-L1 was upregulated under glutamine deprivation through the EGFR/MEK/ERK/c-Jun pathway to impair T cell function.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Xu
- Department of Geratology, The 971th Hospital of PLA Navy, Qingdao, China
| | - Xuecheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhijuan Liang
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Li
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guofeng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yonghua Wang
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haitao Niu
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|