1
|
Luo Q, Shen Z, Kanjana N, Guo X, Wu H, Zhang L. Molecular Identification of the Glutaredoxin 5 Gene That Plays Important Roles in Antioxidant Defense in Arma chinensis (Fallou). INSECTS 2024; 15:537. [PMID: 39057270 PMCID: PMC11277427 DOI: 10.3390/insects15070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Glutaredoxin (Grx) is a group of redox enzymes that control reactive oxygen species (ROS), traditionally defined as redox regulators. Recent research suggested that members of the Grx family may be involved in more biological processes than previously thought. Therefore, we cloned the AcGrx5 gene and identified its role in A. chinensis diapause. Sequence analysis revealed the ORF of AcGrx5 was 432 bp, encoding 143 amino acids, which was consistent with the homologous sequence of Halyomorpha halys. RT-qPCR results showed that AcGrx5 expression was the highest in the head, and compared with non-diapause conditions, diapause conditions significantly increased the expression of AcGrx5 in the developmental stages. Further, we found that 15 °C low-temperature stress significantly induced AcGrx5 expression, and the expression of antioxidant enzyme genes AcTrx2 and AcTrx-like were significantly increased after AcGrx5 knockdown. Following AcGrx5 silencing, there was a considerable rise in the levels of VC content, CAT activity, and hydrogen peroxide content, indicating that A. chinensis was exposed to high levels of reactive oxygen species. These results suggested that the AcGrx5 gene may play a key role in antioxidant defense.
Collapse
Affiliation(s)
- Qiaozhi Luo
- School of Horticulture and Gardening, Tianjin Agricultural University, Tianjin 300392, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
| | - Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
| | - Nipapan Kanjana
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
| | - Xingkai Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
| | - Huihui Wu
- School of Horticulture and Gardening, Tianjin Agricultural University, Tianjin 300392, China;
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
2
|
Yoon JP, Park SJ, Choi YS, Kim DH, Lee HJ, Park EJJ, Chung SW. Current research trends on the effect of diabetes mellitus on rotator cuff tendon healing/tendinopathy. Arch Orthop Trauma Surg 2024; 144:2491-2500. [PMID: 38698293 DOI: 10.1007/s00402-024-05350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Rotator cuff tendon tears are a leading cause of shoulder pain. They are challenging to treat, and tendon-bone healing has a high failure rate despite successful surgery. Tendons connect the muscles and bones, which make them important for the body's overall mobility and stability. Metabolic diseases, including diabetes or high blood pressure, can affect the healing process after repair of a damaged tendon. With a global incidence of 9.3%, diabetes is considered as a significant risk factor for rotator cuff tendon healing because it causes structural, inflammatory, and vascular changes in the tendon. However, the mechanisms of how diabetes affects tendon healing remain unknown. Several factors have been suggested, including glycation product accumulation, adipokine dysregulation, increased levels of reactive oxygen species, apoptosis, inflammatory cytokines, imbalanced matrix-metalloproteinase-to-tissue-inhibitor ratio, and impaired angiogenesis and differentiation of the tendon sheath. Despite the effects of diabetes on tendon function and healing, few treatments are available to improve recovery in these patients. This review summarizes the current literature on the pathophysiological changes of the tendon in diabetes and hyperlipidemia. Preclinical and clinical evidence regarding the association between diabetes and tendon healing is presented. Moreover, current approaches to improve tendon healing in patients with diabetes are reviewed.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea
| | - Sung-Jin Park
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea.
| | - Yoon Seong Choi
- Department of Carbon Hybrid Fiber Science, Kyungpook National University, Daegu, Korea
| | - Dong-Hyun Kim
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea
| | - Hyun Joo Lee
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea
| | - Eugene Jae Jin Park
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
3
|
Bahramzadeh A, Samavarchi Tehrani S, Goodarzi G, Seyyedebrahimi S, Meshkani R. Combination therapy of metformin and morin attenuates insulin resistance, inflammation, and oxidative stress in skeletal muscle of high-fat diet-fed mice. Phytother Res 2024; 38:912-924. [PMID: 38091524 DOI: 10.1002/ptr.8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 02/15/2024]
Abstract
Lipid accumulation, inflammation, and oxidative stress are the most important causes of muscle insulin resistance. The aim of this study was to investigate the single and combined treatment effects of metformin (MET) and morin (MOR) on lipid accumulation, inflammation, and oxidative stress in the skeletal muscle of mice fed a high-fat diet. The mice were supplemented with MET (230 mg/kg diet), MOR (100 mg/kg diet), and MET + MOR for 9 weeks. Our results revealed that single treatment with MET or MOR, and with a stronger effect of MET + MOR combined treatment, reduced body weight gain, improved glucose intolerance and enhanced Akt phosphorylation in the muscle tissue. In addition, plasma and muscle triglyceride levels were decreased after treatment with MET and MOR. The expression of genes involved in macrophage infiltration and polarization and pro-inflammatory cytokines showed that MET + MOR combined treatment, significantly reduced inflammation in the muscle. Furthermore, combined treatment of MET + MOR with greater efficacy than the single treatment improved several oxidative stress markers in the muscle. Importantly, combined treatment of MET and MOR could increase the expression of nuclear factor erythroid 2-related factor 2, the master regulator of the antioxidant response. These findings suggest that combination of MET with MOR might ameliorate insulin resistance, inflammation, and oxidative stress in the skeletal muscle of mice fed high-fat diet.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Science, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - ShadiSadat Seyyedebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lisco G, Disoteo OE, De Tullio A, De Geronimo V, Giagulli VA, Monzani F, Jirillo E, Cozzi R, Guastamacchia E, De Pergola G, Triggiani V. Sarcopenia and Diabetes: A Detrimental Liaison of Advancing Age. Nutrients 2023; 16:63. [PMID: 38201893 PMCID: PMC10780932 DOI: 10.3390/nu16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Sarcopenia is an age-related clinical complaint characterized by the progressive deterioration of skeletal muscle mass and strength over time. Type 2 diabetes (T2D) is associated with faster and more relevant skeletal muscle impairment. Both conditions influence each other, leading to negative consequences on glycemic control, cardiovascular risk, general health status, risk of falls, frailty, overall quality of life, and mortality. PubMed/Medline, Scopus, Web of Science, and Google Scholar were searched for research articles, scientific reports, observational studies, clinical trials, narrative and systematic reviews, and meta-analyses to review the evidence on the pathophysiology of di-abetes-induced sarcopenia, its relevance in terms of glucose control and diabetes-related outcomes, and diagnostic and therapeutic challenges. The review comprehensively addresses key elements for the clinical definition and diagnostic criteria of sarcopenia, the pathophysiological correlation be-tween T2D, sarcopenia, and related outcomes, a critical review of the role of antihyperglycemic treatment on skeletal muscle health, and perspectives on the role of specific treatment targeting myokine signaling pathways involved in glucose control and the regulation of skeletal muscle metabolism and trophism. Prompt diagnosis and adequate management, including lifestyle inter-vention, health diet programs, micronutrient supplementation, physical exercise, and pharmaco-logical treatment, are needed to prevent or delay skeletal muscle deterioration in T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Olga Eugenia Disoteo
- Unit of Endocrinology, Diabetology, Dietetics and Clinical Nutrition, Sant Anna Hospital, 22020 San Fermo della Battaglia, Italy;
| | - Anna De Tullio
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Vincenzo De Geronimo
- Unit of Endocrinology, Clinical Diagnostic Center Morgagni, 95100 Catania, Italy;
| | - Vito Angelo Giagulli
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Fabio Monzani
- Geriatrics Unit, Department of Clinical & Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Emilio Jirillo
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Renato Cozzi
- Division of Endocrinology, Niguarda Hospital, 20162 Milan, Italy;
| | - Edoardo Guastamacchia
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| | - Vincenzo Triggiani
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| |
Collapse
|
5
|
Bruns DR, McNair BD, Peelor FF, Borowik AK, Pranay A, Yusifov A, Miller BF. Skeletal and cardiac muscle have different protein turnover responses in a model of right heart failure. GeroScience 2023; 45:2545-2557. [PMID: 37118350 PMCID: PMC10651599 DOI: 10.1007/s11357-023-00777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 04/30/2023] Open
Abstract
Right heart failure (RHF) is a common and deadly disease in aged populations. Extra-cardiac outcomes of RHF such as skeletal muscle atrophy contribute to morbidity and mortality. Despite the significance of maintaining right ventricular (RV) and muscle function, the mechanisms of RHF and muscle atrophy are unclear. Metformin (MET) improves cardiac and muscle function through the regulation of metabolism and the cellular stress response. However, whether MET is a viable therapeutic for RHF and muscle atrophy is not yet known. We used deuterium oxide labeling to measure individual protein turnover in the RV as well as subcellular skeletal muscle proteostasis in aged male mice subjected to 4 weeks of hypobaric hypoxia (HH)-induced RHF. Mice exposed to HH had elevated RV mass and impaired RV systolic function, neither of which was prevented by MET. HH resulted in a higher content of glycolytic, cardiac, and antioxidant proteins in the RV, most of which were inhibited by MET. The synthesis of these key RV proteins was generally unchanged by MET, suggesting MET accelerated protein breakdown. HH resulted in a loss of skeletal muscle mass due to inhibited protein synthesis alongside myofibrillar protein breakdown. MET did not impact HH-induced muscle protein turnover and did not prevent muscle wasting. Together, we show tissue-dependent responses to HH-induced RHF where the RV undergoes hypertrophic remodeling with higher expression of metabolic and stress response proteins. Skeletal muscle undergoes loss of protein mass and atrophy, primarily due to myofibrillar protein breakdown. MET did not prevent HH-induced RV dysfunction or muscle wasting, suggesting that the identification of other therapies to attenuate RHF and concomitant muscle atrophy is warranted.
Collapse
Affiliation(s)
- Danielle R Bruns
- Division of Kinesiology & Health, University of Wyoming, 1000 E. University Ave, Dept. 3196, Laramie, WY, 82071, USA.
- Wyoming WWAMI Medical Education, Laramie, WY, USA.
| | - Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, 1000 E. University Ave, Dept. 3196, Laramie, WY, 82071, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Aykhan Yusifov
- Division of Kinesiology & Health, University of Wyoming, 1000 E. University Ave, Dept. 3196, Laramie, WY, 82071, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Zhang T, Yin X, Yu X, Shang R, Lu L, Miao J. Metformin protects fibroblasts from patients with GNE myopathy by restoring autophagic flux via an AMPK/mTOR-independent pathway. Biomed Pharmacother 2023; 164:114958. [PMID: 37263165 DOI: 10.1016/j.biopha.2023.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy is an autosomal recessive disease characterized by rimmed vacuoles (RVs). Previous studies have shown that metformin protects against several neuromuscular disorders. In the present study, we summarize the clinical features of three GNE patients with the p.D207V mutation. The pathogenesis of GNE myopathy is described, and the significance of metformin in this disease is observed. Skin biopsy-derived fibroblasts from patients with GNE myopathy, carrying a D207V mutation in GNE, were cultured. GNE fibroblasts and control fibroblasts were treated under normal culture conditions, serum starvation conditions, or serum starvation + metformin conditions. Histopathological and immunohistochemical analyses of muscle samples showed that autophagy was involved in the formation of RVs in the muscle of patients. Starved GNE fibroblasts showed decreased autophagy-related proteins and impaired autophagic flow (p < 0.05). The mRFP-GFP-LC3 assay showed that the fusion of autophagosomes with lysosomes was partially blocked in GNE cells. Notably, metformin treatment upregulated the expression of autophagy proteins, increased the number of autolysosomes (p < 0.001), and influenced the viability of GNE cells (p < 0.001). Furthermore, adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and phosphorylated (p)-AMPK expression levels were upregulated in serum-starved GNE fibroblasts, while the mammalian target of rapamycin (mTOR) and p-mTOR expression levels were downregulated in both groups. Metformin treatment inhibited the AMPK-mTOR signaling pathway. Our results suggest that metformin plays a protective role in the GNE fibroblast by restoring autophagic flux and through the AMPK/mTOR-independent pathway.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Xuefan Yu
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Ren Shang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Liuzhe Lu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Jing Miao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
7
|
Ramlugon S, Levendal R, Frost CL. Effect of oral cannabis administration on the fat depots of obese and streptozotocin-induced diabetic rats. Phytother Res 2023; 37:1806-1822. [PMID: 36437580 PMCID: PMC10947483 DOI: 10.1002/ptr.7694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 11/29/2022]
Abstract
The prevalence of obesity and insulin-resistance is on the rise, globally. Cannabis have been shown to have anti-diabetic/obesity properties, however, the effect mediated at various fat depots remains to be clarified. The aim of this study was to (1) investigate the anti-diabetic property of an oral cannabis administration in an obese and streptozotocin-induced diabetic rat model and (2) to determine and compare the effect mediated at the peritoneal and intramuscular fat level. Cannabis concentration of 1.25 mg/kg body weight (relative to THC content) was effective in reversing insulin-resistance in the rat model, unlike the other higher cannabinoid concentrations. At the peritoneal fat level, gene expression of fat beigeing markers, namely Cidea and UCP1, were significantly increased compared to the untreated control. At the intramuscular fat level, on the other hand, CE1.25 treatment did not promote fat beigeing but instead significantly increased mitochondrial activity, relative to the untreated control. Therefore, these findings indicate that the mechanism of action of oral cannabis administration, where glucose and lipid homeostasis is restored, is not only dependent on the dosage but also on the type of fat depot investigated.
Collapse
Affiliation(s)
- Sonaal Ramlugon
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| | - Ruby‐Ann Levendal
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| | - Carminita L. Frost
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| |
Collapse
|
8
|
Xie K, Sugimoto K, Tanaka M, Akasaka H, Fujimoto T, Takahashi T, Onishi Y, Minami T, Yoshida S, Takami Y, Yamamoto K, Rakugi H. Effects of luseogliflozin treatment on hyperglycemia-induced muscle atrophy in rats. J Clin Biochem Nutr 2023; 72:248-255. [PMID: 37251965 PMCID: PMC10209601 DOI: 10.3164/jcbn.22-58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/04/2022] [Indexed: 10/22/2023] Open
Abstract
Diabetes mellitus is recognized as a risk factor for sarcopenia. Luseogliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, reduces inflammation and oxidative stress by improving hyperglycemia, subsequently improving hepatosteatosis or kidney dysfunction. However, the effects of SGLT2 inhibitor on the regulation of skeletal muscle mass or function in hyperglycemia are still unknown. In this study, we investigated the effects of luseogliflozin-mediated attenuation of hyperglycemia on the prevention of muscle atrophy. Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control, control with SGLT2 inhibitor treatment, hyperglycemia, and hyperglycemia with SGLT2 inhibitor treatment. The hyperglycemic rodent model was established using a single injection of streptozotocin, a compound with preferential toxicity toward pancreatic beta cells. Muscle atrophy in streptozotocin-induced hyperglycemic model rats was inhibited by the suppression of hyperglycemia using luseogliflozin, which consequently suppressed hyperglycemia-mediated increase in the levels of advanced glycation end products (AGEs) and activated the protein degradation pathway in muscle cells. Treatment with luseogliflozin can restore the hyperglycemia-induced loss in the muscle mass to some degree partly through the inhibition of AGEs-induced or homeostatic disruption of mitochondria-induced activation of muscle degradation.
Collapse
Affiliation(s)
- Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ken Sugimoto
- Department of General Geriatric Medicine, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomoga-oka, Suma, Kobe, Hyogo 654-0142, Japan
- Department of Rehabilitation Science, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Institute for Biogenesis Research, Department of Anatomy Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuri Onishi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomohiro Minami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Mirzoev TM, Paramonova II, Rozhkov SV, Kalashnikova EP, Belova SP, Tyganov SA, Vilchinskaya NA, Shenkman BS. Metformin Pre-Treatment as a Means of Mitigating Disuse-Induced Rat Soleus Muscle Wasting. Curr Issues Mol Biol 2023; 45:3068-3086. [PMID: 37185725 PMCID: PMC10136829 DOI: 10.3390/cimb45040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Currently, no ideal treatment exists to combat skeletal muscle disuse-induced atrophy and loss of strength. Because the activity of AMP-activated protein kinase (AMPK) in rat soleus muscle is suppressed at the early stages of disuse, we hypothesized that pre-treatment of rats with metformin (an AMPK activator) would exert beneficial effects on skeletal muscle during disuse. Muscle disuse was performed via hindlimb suspension (HS). Wistar rats were divided into four groups: (1) control (C), (2) control + metformin for 10 days (C+Met), (3) HS for 7 days (HS), (4) metformin treatment for 7 days before HS and during the first 3 days of 1-week HS (HS+Met). Anabolic and catabolic markers were assessed using WB and RT-PCR. Treatment with metformin partly prevented an HS-induced decrease in rat soleus weight and size of slow-twitch fibers. Metformin prevented HS-related slow-to-fast fiber transformation. Absolute soleus muscle force in the HS+Met group was increased vs. the HS group. GSK-3β (Ser9) phosphorylation was significantly increased in the HS+Met group vs. the HS group. Metformin pre-treatment partly prevented HS-induced decrease in 18S+28S rRNA content and attenuated upregulation of calpain-1 and ubiquitin. Thus, pre-treatment of rats with metformin can ameliorate disuse-induced reductions in soleus muscle weight, the diameter of slow-type fibers, and absolute muscle strength.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Inna I Paramonova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Sergey V Rozhkov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | | | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | | | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
10
|
Mellen RH, Girotto OS, Marques EB, Laurindo LF, Grippa PC, Mendes CG, Garcia LNH, Bechara MD, Barbalho SM, Sinatora RV, Haber JFDS, Flato UAP, Bueno PCDS, Detregiachi CRP, Quesada K. Insights into Pathogenesis, Nutritional and Drug Approach in Sarcopenia: A Systematic Review. Biomedicines 2023; 11:136. [PMID: 36672642 PMCID: PMC9856128 DOI: 10.3390/biomedicines11010136] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia is a multifactorial condition related to the loss of muscle mass and strength due to aging, eating habits, physical inactivity, or even caused by another disease. Affected individuals have a higher risk of falls and may be associated with heart disease, respiratory diseases, cognitive impairment, and consequently an increased risk of hospitalization, in addition to causing an economic impact due to the high cost of care during the stay in hospitals. The standardization of appropriate treatment for patients with sarcopenia that could help reduce pathology-related morbidity is necessary. For these reasons, this study aimed to perform a systematic review of the role of nutrition and drugs that could ameliorate the health and quality of life of sarcopenic patients and PRISMA guidelines were followed. Lifestyle interventions have shown a profound impact on sarcopenia treatment but using supplements and different drugs can also impact skeletal muscle maintenance. Creatine, leucine, branched-chain amino acids, omega 3, and vitamin D can show benefits. Although with controversial results, medications such as Metformin, GLP-1, losartan, statin, growth hormone, and dipeptidyl peptidase 4 inhibitors have also been considered and can alter the sarcopenic's metabolic parameters, protect against cardiovascular diseases and outcomes, while protecting muscles.
Collapse
Affiliation(s)
- Rodrigo Haber Mellen
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Otávio Simões Girotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Eduarda Boni Marques
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lorena Natalino Haber Garcia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Uri Adrian P. Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Patricia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| |
Collapse
|
11
|
Wang F, Zhou CX, Zheng Z, Li DJ, Li W, Zhou Y. Metformin reduces myogenic contracture and myofibrosis induced by rat knee joint immobilization via AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. Connect Tissue Res 2023; 64:26-39. [PMID: 35723580 DOI: 10.1080/03008207.2022.2088365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The two structural components contributing to joint contracture formation are myogenic and arthrogenic contracture, and myofibrosis is an important part of myogenic contracture. Myofibrosis is a response to long-time immobilization and is described as a condition with excessive deposition of endomysial and perimysial connective tissue components in skeletal muscle. The purpose of this study was to confirm whether metformin can attenuate the formation of myogenic contracture and myofibrosis through the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) and inhabitation of subsequent transforming growth factor beta (TGF-β) 1/Smad signaling pathway. MATERIALS AND METHODS An immobilized rat model was used to determine whether metformin could inhibit myogenic contracture and myofibrosis. The contents of myogenic contracture of knee joint was calculated by measuring instrument of range of motion (ROM), and myofibrosis of rectus femoris were determined by ultrasound shear wave elastography and Masson staining. Protein expression of AMPK and subsequent TGF-β1/Smad signaling pathway were determined by western blot. Subsequently, Compound C, a specific AMPK inhibitor, was used to further clarify the role of the AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. RESULTS We revealed that the levels of myogenic contracture and myofibrosis were gradually increased during immobilization, and overexpression of TGF-β1-induced formation of myofibrosis by activating Smad2/3 phosphorylation. Activation of AMPK by metformin suppressed overexpression of TGF-β1 and TGF-β1-induced Smad2/3 phosphorylation, further reducing myogenic contracture and myofibrosis during immobilization. In contrast, inhibition of AMPK by Compound C partially counteracted the inhibitory effect of TGF-β1/Smad signaling pathway by metformin. CONCLUSION Notably, we first illustrated the therapeutic effect of metformin through AMPK-mediated inhibition of TGF-β1/Smad signaling pathway in myofibrosis, which may provide a new therapeutic strategy for myogenic contracture.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.,Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chen Xu Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhi Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Du Juan Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wen Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
13
|
Fullerton ZS, McNair BD, Marcello NA, Schmitt EE, Bruns DR. Exposure to High Altitude Promotes Loss of Muscle Mass That Is Not Rescued by Metformin. High Alt Med Biol 2022; 23:215-222. [PMID: 35653735 PMCID: PMC9526469 DOI: 10.1089/ham.2022.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
Fullerton, Zackery S., Benjamin D. McNair, Nicholas A. Marcello, Emily E. Schmitt, and Danielle R. Bruns. Exposure to high altitude promotes loss of muscle mass that is not rescued by metformin. High Alt Med Biol. 23:215-222, 2022. Background: Exposure to high altitude (HA) causes muscle atrophy. Few therapeutic interventions attenuate muscle atrophy; however, the diabetic drug, metformin (Met), has been suggested as a potential therapeutic to preserve muscle mass with aging and obesity-related atrophy. The purpose of the present study was to test the hypothesis that HA would induce muscle atrophy that could be attenuated by Met. Methods: C57Bl6 male and female mice were exposed to simulated HA (∼5,200 m) for 4 weeks, while control (Con) mice remained at resident altitude (∼2,180 m). Met was administered in drinking water at 200 mg/(kg·day). We assessed muscle mass, myocyte cell size, muscle and body composition, and expression of molecular mediators of atrophy. Results: Mice exposed to HA were leaner and had a smaller hind limb complex (HLC) mass than Con mice. Loss of HLC mass and myocyte size were not attenuated by Met. Molecular markers for muscle atrophy were activated at HA in a sex-dependent manner. While the atrophic regulator, atrogin, was unchanged at HA or with Met, myostatin expression was upregulated at HA. In female mice, Met further stimulated myostatin expression. Conclusions: Although HA exposure resulted in loss of muscle mass, particularly in male mice, Met did not attenuate muscle atrophy. Identification of other interventions to preserve muscle mass during ascent to HA is warranted.
Collapse
Affiliation(s)
- Zackery S. Fullerton
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Benjamin D. McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Nicholas A. Marcello
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Emily E. Schmitt
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
- Wyoming WWAMI Medical Education, Laramie, Wyoming, USA
| | - Danielle R. Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
- Wyoming WWAMI Medical Education, Laramie, Wyoming, USA
| |
Collapse
|
14
|
Chang R, Tu TY, Hung YM, Huang JY, Chou MC, Wei JCC. Metformin use is associated with a lower risk of rotator cuff disease in patients with type 2 diabetes mellitus. DIABETES & METABOLISM 2022; 48:101368. [PMID: 35760373 DOI: 10.1016/j.diabet.2022.101368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
AIMS - Metformin has been mentioned to be protective against inflammation, degeneration, and oxidative stress, conditions that are associated with rotator cuff disease. To access the association between metformin use and risk of rotator cuff disease in patients with type 2 diabetes mellitus (DM). METHODS - This was a retrospective cohort study utilizing Taiwan National Health Insurance Research Database between January 1, 2000, and December 31, 2012 to retrieved participants. Metformin and propensity score matched never metformin users were determined at baseline (between the date of onset of DM and the index date), and followed to December 31, 2013. Propensity scores were adopted to address measurable confounders (including demographic variables, Diabetes Complications Severity Index, and relevant comorbidities and co-medication). A multivariable Cox proportional hazards regression model was applied to estimate the adjusted hazard ratios (HRs) for the risk of the first diagnosis of rotator cuff disease on the full cohort and on the propensity score matched cohort. RESULTS - In the propensity score matched cohort, a total of 34,964 individuals (19,416 [55.5%] men), 17,482 individuals were taking metformin, 559 [3.2%] of whom developed rotator cuff disease. Incidence of rotator cuff disease was 4.51 per 10,000 person-months in the metformin users and 5.11 in the controls. Among metformin group, the aHR (95% CI) was 0.879 (0.784-0.984) after full adjustment. The potential beneficial effect on the risk of rotator cuff disease was consistently observed across all subgroups, including sex, age, concomitant other glucose lowering drugs, and level of Diabetes Complications Severity Index (all P for interaction > 0.050). CONCLUSION - Metformin use was associated with a lower risk of rotator cuff disease in patients with type 2 DM.
Collapse
Affiliation(s)
- Renin Chang
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan; Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Ting-Yu Tu
- Department of Orthopedic, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Yao-Min Hung
- Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; College of Health and Nursing, Meiho University, Pingtung, Taiwan.
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| | - Mei-Chia Chou
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan; Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Pingtung Branch, Pingtung, Taiwan.
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
Nishikawa H, Fukunishi S, Asai A, Yokohama K, Ohama H, Nishiguchi S, Higuchi K. Sarcopenia, frailty and type 2 diabetes mellitus (Review). Mol Med Rep 2021; 24:854. [PMID: 34651658 DOI: 10.3892/mmr.2021.12494] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle is the largest and most energy‑consuming organ in the human body, which plays an important role in energy metabolism and glucose uptake. There is a notable decrease in glucose uptake in the skeletal muscle of patients with type 2 diabetes mellitus (DM). Endurance exercise can reduce hyperglycemia and improve insulin resistance in patients with type 2 DM. Insulin exerts a variety of effects, many of which are mediated by Akt, including increasing glucose uptake, promoting glycogen synthesis and inhibiting glycogen degradation, increasing free fatty acid uptake, increasing protein synthesis, promoting muscle hypertrophy and inhibiting protein degradation. Skeletal muscle mass progressively declines with aging, resulting in loss of muscle strength and physical function. Sarcopenia is a syndrome characterized by loss of skeletal muscle mass and muscle weakness or loss of physical function, and frailty is another syndrome that has received great interest in recent years. Decreased organ function results in vulnerability to external stress. Frailty is associated with falls, fractures and hospitalization; however, there is the reversibility of returning to a healthy state with appropriate interventions. Frailty is classified into three subgroups: Physical frailty, social frailty and cognitive frailty, whereby sarcopenia is the main component of physical frailty. The present review discusses the associations between sarcopenia, frailty and type 2 DM based on current evidence.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Shinya Fukunishi
- The Premier Department of Medicine Research, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Akira Asai
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Keisuke Yokohama
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Hideko Ohama
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Shuhei Nishiguchi
- The Department of Internal Medicine, Kano General Hospital, Takatsuki, Osaka 531‑0041, Japan
| | - Kazuhide Higuchi
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| |
Collapse
|
16
|
Guo H, Zhang Y, Han T, Cui X, Lu X. Chronic intermittent hypoxia aggravates skeletal muscle aging by down-regulating Klc1/grx1 expression via Wnt/β-catenin pathway. Arch Gerontol Geriatr 2021; 96:104460. [PMID: 34218156 DOI: 10.1016/j.archger.2021.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Sleep breathing disorder may affect skeletal muscle decline in the elderly, but the mechanism is not clear. Therefore, this study explores the mechanism of skeletal muscle aging in chronic intermittent hypoxia (CIH) rats. METHODS In vitro and in vivo CIH models were constructed in L6 cells and SD rats by treating chronic intermittent hypoxia. Pathological changes of skeletal muscle in vivo were measured by hematoxylin-eosin (HE) staining. Cell proliferation and apoptosis were detected by CCK-8 and Flow cytometer, respectively. The expression of KLC1/GRX1 and the proteins related to the Wnt/β-catenin pathway were measured by qRT-PCR and western blot. RESULTS CIH model was successfully established induced by chronic intermittent hypoxia with lower skeletal muscle index (SMI), increased inward migration of muscle fiber cell nucleus, and muscle cells' distance. The results showed that Wnt/β-catenin signalling was activatedin both L6 cells and CIH rats' model. KLC1 and GRX1 were significantly downregulated in the CIH model. Loss of function showed that downregulation of KLC1 promoted L6 cell and skeletal muscle aging in vitro and in vivo, respectively. CONCLUSION Our results demonstrated that CIH aggravated skeletal muscle aging by down-regulating KLC1/GRX1 expression via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hua Guo
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China; Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yunyun Zhang
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Tingting Han
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xiaochuan Cui
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China.
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|