1
|
Han S, Wang L, Peng X, Wang J, Ou Y, Tao Y, Ding L, Zhang L. Amelogenin-Inspired Autoadaptive Peptide in a Caries Microenvironment Facilitates Long-Term Protection of the Dentin-Pulp Complex. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39046307 DOI: 10.1021/acsami.4c07981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Dental caries, one of the most prevalent infectious diseases, is the primary contributor to the early loss of natural teeth and is a significant public health issue. Known as the tooth's bioactive core, the dentin-pulp complex (DPCX) comprises tightly connected hard and soft tissues that not only serve as a biological barrier for the inner tooth tissue but also produce reparative dentin following mild disruptions. While efforts to preserve DPCX are numerous, most strategies focus on temporary antibacterial measures, inflammation reduction, or tissue regeneration, lacking a comprehensive, long-lasting solution. In this study, TVH-19, an autoadaptive peptide mimicking the pH- and ion-responsive capacity of amelogenin, was designed to exert multifaceted preservation of DPCX, providing a comprehensive strategy for preserving vital pulp. Leveraging its unique amphiphilicity-related cell penetration and ion/pH-responsive self-assembly properties, TVH-19 outperforms conventional pulp preservation materials by being capable of rapid cell penetration, minimizing diffused side effects, providing environment-responsive self-assembly/disassembly for balanced long-term antibacterial and cell protection, and facilitating the formation of lysosomal-escaping intracellular aggregates for the continuous activation of PDGFRα+ dental pulp stem cells.
Collapse
Affiliation(s)
- Sili Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Luoyao Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiu Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jing Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yeling Ou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yu Tao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650504, P. R. China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Lee M, Lee YS, Shon WJ, Park JC. Physiologic dentin regeneration: its past, present, and future perspectives. Front Physiol 2023; 14:1313927. [PMID: 38148896 PMCID: PMC10750396 DOI: 10.3389/fphys.2023.1313927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Regenerative dentistry has rapidly progressed since the advancement of stem cell biology and material science. However, more emphasis has been placed on the success of tissue formation than on how well the newly generated tissue retains the original structure and function. Once dentin is lost, tertiary dentinogenesis can be induced by new odontoblastic differentiation or re-activation of existing odontoblasts. The characteristic morphology of odontoblasts generates the tubular nature of dentin, which is a reservoir of fluid, ions, and a number of growth factors, and protects the inner pulp tissue. Therefore, understanding the dynamic but delicate process of new dentin formation by odontoblasts, or odontoblast-like cells, following dentinal defects is crucial. In this regard, various efforts have been conducted to identify novel molecules and materials that can promote the regeneration of dentin with strength and longevity. In this review, we focus on recent progress in dentin regeneration research with biological molecules identified, and discuss its potential in future clinical applications.
Collapse
Affiliation(s)
- Myungjin Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yoon Seon Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Won-Jun Shon
- Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Park C, Song M, Kim SY, Min BM. Vitronectin-Derived Peptide Promotes Reparative Dentin Formation. J Dent Res 2022; 101:1481-1489. [PMID: 35708468 DOI: 10.1177/00220345221101506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exposed dental pulp can maintain its vitality through a pulp-capping procedure with biocompatible materials, followed by reparative dentin formation. Our previous study demonstrated that a vitronectin-derived peptide (VnP-16) promotes osteoblast differentiation and concomitantly restrains osteoclast differentiation and resorptive function. In this study, we aimed to demonstrate that VnP-16 promotes odontoblast differentiation, mineralization, and reparative dentin formation in a pulp exposure model using a rat tooth. VnP-16 showed no cytotoxicity and promoted cellular behavior in human dental pulp cells, enhancing their differentiation into odontoblast-like cells and mineralization, effects that are comparable to those obtained with vitronectin. In a rat pulp exposure model, VnP-16 showed mild inflammatory responses at 2 and 4 wk or none. Mineral trioxide aggregate (MTA) demonstrated a tendency of early formation of reparative dentin at 2 wk when compared with recombinant human bone morphogenetic protein 2 (rhBMP-2) and VnP-16. However, VnP-16 induced reparative dentin formation similar to MTA and rhBMP-2 without inflammation at 4 wk. In addition, VnP-16 showed a thicker and homogeneous reparative dentin formation versus MTA and rhBMP-2. Collectively, these results suggest that VnP-16 can be a useful, direct pulp-capping agent for highly qualified reparative dentin formation by promoting cell behavior and odontoblastic differentiation of human dental pulp cells.
Collapse
Affiliation(s)
- C Park
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.,Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - M Song
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheon-An, Korea
| | - S Y Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - B M Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Peng X, Han S, Wang K, Ding L, Liu Z, Zhang L. The Amelogenin-Derived Peptide TVH-19 Promotes Dentinal Tubule Occlusion and Mineralization. Polymers (Basel) 2021; 13:2473. [PMID: 34372076 PMCID: PMC8347252 DOI: 10.3390/polym13152473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, the amelogenin-derived peptide, TVH-19, which has been confirmed to promote mineralization, was evaluated to derive its potential to induce dentinal tubule occlusion. The binding capability of fluorescein isothiocyanate (FITC)-labeled TVH-19 to the demineralized dentin surface was analyzed by confocal laser scanning microscopy (CLSM). Additionally, the sealing function of the peptide was studied through the remineralization of demineralized dentin in vitro. The adsorption results showed that TVH-19 could bind to the hydroxyapatite and demineralized dentin surfaces, especially to periodontal dentin. Scanning electron microscopy analysis further revealed that TVH-19 created mineral precipitates. The plugging rate in the TVH-19 group was higher than that in the PBS group. Moreover, energy-dispersive X-ray spectroscopy (EDX) results indicated that the calcium/phosphorus (Ca/P) ratio of the new minerals induced by TVH-19 was close to that of the hydroxyapatite. Attenuated total internal reflection-Fourier transform infrared (ATR-FTIR) spectrometry and X-ray diffraction (XRD) results indicated that the hydroxyapatite crystals formed via remineralization elongated the axial growth and closely resembled the natural dentin components. These findings indicate that TVH-19 can effectively promote dentin sealing by binding to the periodontal dentin, promoting mineral deposition, and reducing the space between the dentin tubules.
Collapse
Affiliation(s)
| | | | | | | | | | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610041, China; (X.P.); (S.H.); (K.W.); (L.D.); (Z.L.)
| |
Collapse
|
5
|
Peng X, Han S, Wang K, Ding L, Liu Z, Zhang L. Evaluating the potential of an amelogenin-derived peptide in tertiary dentin formation. Regen Biomater 2021; 8:rbab004. [PMID: 33738118 PMCID: PMC7955718 DOI: 10.1093/rb/rbab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 02/05/2023] Open
Abstract
Several novel biomaterials have been developed for dental pulp capping by inducing tertiary dentin formation. The aim of this study was to evaluate the effect of QP5, an amelogenin-based peptide, on the mineralization of dental pulp cells (DPCs) in vitro and in vivo. The cell viability of human DPCs (hDPCs) after treatment with QP5 was determined using the Cell Counting Kit-8 (CCK-8). Migration of hDPCs was assessed using scratch assays, and the pro-mineralization effect was determined using alkaline phosphatase (ALP) staining, alizarin red staining and the expression of mineralization-related genes and proteins. The results showed that QP5 had little effect on the cell viability, and significantly enhanced the migration capability of hDPCs. QP5 promoted the formation of mineralized nodules, and upregulated the activity of ALP, the expression of mRNA and proteins of mineralization-related genes. A pulp capping model in rats was generated to investigate the biological effect of QP5. The results of micro-computed tomography and haematoxylin and eosin staining indicated that the formation of tertiary dentin in QP5-capping groups was more prominent than that in the negative control group. These results indicated the potential of QP5 as a pulp therapy agent.
Collapse
Affiliation(s)
- Xiu Peng
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sili Han
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|