1
|
Ishibashi C, Yoneda S, Fujita Y, Fujita S, Mitsushio K, Ozawa H, Baden MY, Nammo T, Kozawa J, Eguchi H, Shimomura I. Decreased islet amyloid polypeptide staining in the islets of insulinoma patients. Islets 2024; 16:2379650. [PMID: 39028826 PMCID: PMC11262209 DOI: 10.1080/19382014.2024.2379650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Islet amyloid polypeptide (IAPP) is a factor that regulates food intake and is secreted from both pancreatic islets and insulinoma cells. Here, we aimed to evaluate IAPP immunohistochemically in islets or insulinoma cells in association with clinical characteristics. We recruited six insulinoma patients and six body mass index-matched control patients with pancreatic diseases other than insulinoma whose glucose tolerance was confirmed to be normal preoperatively. IAPP and IAPP-insulin double staining were performed on pancreatic surgical specimens. We observed that the IAPP staining level and percentage of IAPP-positive beta cells tended to be lower (p = 0.1699) in the islets of insulinoma patients than in those of control patients, which might represent a novel IAPP expression pattern under persistent hyperinsulinemia and hypoglycemia.
Collapse
Affiliation(s)
- Chisaki Ishibashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sho Yoneda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Yoneda Clinic, Osaka, Japan
| | - Yukari Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shingo Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kento Mitsushio
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Harutoshi Ozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Megu Y Baden
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Karatug Kacar A, Bulutay P, Aylar D, Celikten M, Bolkent S. Characterization and comparison of insulinoma tumor model and pancreatic damage caused by the tumor, and identification of possible markers. Mol Biol Rep 2024; 51:109. [PMID: 38227104 DOI: 10.1007/s11033-023-08942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Insulinoma is a neuroendocrine tumor. It arises from the uncontrolled proliferation of pancreatic β cells. In this study, we created an insulinoma tumor model in nude mice. INS-1 cells were injected in two different ways, subcutaneously (S.C.) or intraperitoneally (I.P.). Body weight, tumor weight, and size were measured. ELISA kits were used analyze to Glucose, insulin, and CA19-9 levels in serum, pancreas, and tumor tissues. KCNN4, KCNK1, GLUT2, IR, HSP70, HSF1, and HSP90 levels were analyzed by western blotting of membrane and/or cytosolic fractions of tumor and pancreas tissue. Tumor formation occurred in nude mice, but it did not occur in Wistar albino rats. The tumor has neuroendocrine cell morphology. Insulin and CA19-9 levels increased in pancreas tissue. In tumor tissue, KCNN4 levels were higher in both membrane and cytosolic fractions, while KCNK1 levels were lower in the membrane fraction of the S.C. group. HSP70 levels were also lower in the S.C. group. In pancreas tissue, KCNK1 levels were lower in the membrane fraction of the S.C. and I.P. groups. GLUT2 levels increased in both groups according to the control group, while IR levels decreased in the S.C. group compared to the control group. However, HSF1 levels increased in the I.P. group, while HSP90 decreased in the S.C. group in pancreatic tissues. The S.C. group is a more suitable insulinoma tumor model. KCNN4, KCNK1, and HSP70 proteins may be important biomarkers in the diagnosis and treatment of insulinoma.
Collapse
Affiliation(s)
- Ayse Karatug Kacar
- Faculty of Science, Department of Biology, Istanbul University, 34134- Vezneciler, Istanbul, Turkey.
| | - Pinar Bulutay
- School of Medicine, Department of Pathology, Koç University, Istanbul, Turkey
| | - Dilara Aylar
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Mert Celikten
- Institute of Health Science, Department of Anatomy, Medipol University, Istanbul, Turkey
| | - Sehnaz Bolkent
- Faculty of Science, Department of Biology, Istanbul University, 34134- Vezneciler, Istanbul, Turkey
| |
Collapse
|
3
|
Soyoye DO, Atolani SA, Adetunji TA, Alatise OI. Insulinoma Presenting as Seizures: Challenges of Managing a Rare Disease in a Resource-challenged Setting. JCEM CASE REPORTS 2024; 2:luad162. [PMID: 38116164 PMCID: PMC10729851 DOI: 10.1210/jcemcr/luad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 12/21/2023]
Abstract
Insulinomas are functioning pancreatic neuroendocrine tumors (NETs). They secrete insulin, and hence, present with hypoglycemia. We report a case of insulinoma in a 16-year-old girl presenting as seizures. She was initially managed at a private clinic and later commenced on carbamazepine when convulsion persisted. Convulsions were generalized, associated with dizziness and altered sensorium, often preceded by hunger and physical exertion, but relieved by the intake of carbonated drinks and fruit juice. She was referred to the neurology clinic when seizures persisted, despite the use of anticonvulsant. She was later referred to the endocrine clinic on suspicion of insulinoma when her random blood glucose (BG) was found to be low during an episode of convulsion. She was moderately obese but other examination findings were normal. She had a 72-hour prolonged fast, which was terminated when hypoglycemia (BG = 2.2 mmol/L) ensued after 12 hours, with elevated serum insulin and C-peptide. Abdominal magnetic resonance imaging scan showed a pancreatic tumor suggestive of insulinoma. She subsequently had distal pancreatectomy performed with complete resolution of symptoms. Unusual presentation of insulinoma may delay diagnosis, resulting in wastage of resources with increased morbidities and mortality.
Collapse
Affiliation(s)
- David O Soyoye
- Department of Medicine, Obafemi Awolowo University, Ile-Ife, Osun 220282, Nigeria
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife 220213, Nigeria
| | - Segun A Atolani
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife 220213, Nigeria
| | - Tajudin A Adetunji
- Department of Medicine, Obafemi Awolowo University, Ile-Ife, Osun 220282, Nigeria
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife 220213, Nigeria
| | - Olusegun I Alatise
- Department of Surgery, Obafemi Awolowo University, Ile-Ife, Osun 220282, Nigeria
- Department of Surgery, Obafemi Awolowo University Teaching Hospital, Ile-Ife 220213, Nigeria
| |
Collapse
|
4
|
AYDEMİR E, ATEŞ C, MERCAN SARIDAŞ F, HOCAOĞLU E, CANDER S, ÖZ GÜL Ö, ERTÜRK E, ERSOY C. Evaluation of Insulinoma Cases Presented with Hyperinsulinemic Hypoglycemia: A single-centre Experience. TURKISH JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.46310/tjim.1073351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Markwell SM, Ross JL, Olson CL, Brat DJ. Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol 2022; 143:291-310. [PMID: 35039931 DOI: 10.1007/s00401-021-02401-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most common primary brain tumor and has a dismal prognosis. The development of central necrosis represents a tipping point in the evolution of these tumors that foreshadows aggressive expansion, swiftly leading to mortality. The onset of necrosis, severe hypoxia and associated radial glioma expansion correlates with dramatic tumor microenvironment (TME) alterations that accelerate tumor growth. In the past, most have concluded that hypoxia and necrosis must arise due to "cancer outgrowing its blood supply" when rapid tumor growth outpaces metabolic supply, leading to diffusion-limited hypoxia. However, growing evidence suggests that microscopic intravascular thrombosis driven by the neoplastic overexpression of pro-coagulants attenuates glioma blood supply (perfusion-limited hypoxia), leading to TME restructuring that includes breakdown of the blood-brain barrier, immunosuppressive immune cell accumulation, microvascular hyperproliferation, glioma stem cell enrichment and tumor cell migration outward. Cumulatively, these adaptations result in rapid tumor expansion, resistance to therapeutic interventions and clinical progression. To inform future translational investigations, the complex interplay among environmental cues and myriad cell types that contribute to this aggressive phenotype requires better understanding. This review focuses on contributions from intratumoral thrombosis, the effects of hypoxia and necrosis, the adaptive and innate immune responses, and the current state of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Steven M Markwell
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - James L Ross
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Cheryl L Olson
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA.
| |
Collapse
|