1
|
Malfatti MC, Codrich M, Dalla E, D'Ambrosio C, Storici F, Scaloni A, Tell G. AUF1 Recognizes 8-Oxo-Guanosine Embedded in DNA and Stimulates APE1 Endoribonuclease Activity. Antioxid Redox Signal 2023; 39:411-431. [PMID: 36855946 PMCID: PMC10517317 DOI: 10.1089/ars.2022.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
Aims: The existence of modified ribonucleotide monophosphates embedded in genomic DNA, as a consequence of oxidative stress conditions, including 8-oxo-guanosine and ribose monophosphate abasic site (rAP), has been recently highlighted by several works and associated with oxidative stress conditions. Although human apurinic-apyrimidinic endodeoxyribonuclease 1 (APE1), a key enzyme of the base-excision repair pathway, repairs rAP sites and canonical deoxyribose monophosphate abasic sites with similar efficiency, its incision-repairing activity on 8-oxo-guanosine is very weak. The aims of this work were to: (i) identify proteins able to specifically bind 8-oxo-guanosine embedded in DNA and promote APE1 endoribonuclease activity on this lesion, and (ii) characterize the molecular and biological relevance of this interaction using human cancer cell lines. Results: By using an unbiased proteomic approach, we discovered that the AU-rich element RNA-binding protein 1 (AUF1) actively recognizes 8-oxo-guanosine and stimulates the APE1 enzymatic activity on this DNA lesion. By using orthogonal approaches, we found that: (i) the interaction between AUF1 and APE1 is modulated by H2O2-treatment; (ii) depletion of APE1 and AUF1 causes the accumulation of single- and double- strand breaks; and (iii) both proteins are involved in modulating the formation of DNA:RNA hybrids. Innovation: These results establish unexpected functions of AUF1 in modulating genome stability and improve our knowledge of APE1 biology with respect to 8-oxo-guanosine embedded in DNA. Conclusion: By showing a novel function of AUF1, our findings shed new light on the process of genome stability in mammalian cells toward oxidative stress-related damages. Antioxid. Redox Signal. 39, 411-431.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR) of Italy, Portici, Italy
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR) of Italy, Portici, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
2
|
A Novel Strategy for Regulating mRNA's Degradation via Interfering the AUF1's Binding to mRNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103182. [PMID: 35630659 PMCID: PMC9143527 DOI: 10.3390/molecules27103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
The study on the mechanism and kinetics of mRNA degradation provides a new vision for chemical intervention on protein expression. The AU enrichment element (ARE) in mRNA 3′-UTR can be recognized and bound by the ARE binding protein (AU-rich Element factor (AUF1) to recruit RNase for degradation. In the present study, we proposed a novel strategy for expression regulation that interferes with the AUF1-RNA binding. A small-molecule compound, JNJ-7706621, was found to bind AUF1 protein and inhibit mRNA degradation by screening the commercial compound library. We discovered that JNJ-7706621 could inhibit the expression of AUF1 targeted gene IL8, an essential pro-inflammatory factor, by interfering with the mRNA homeostatic state. These studies provide innovative drug design strategies to regulate mRNA homeostasis.
Collapse
|
3
|
Oe S, Hayashi S, Tanaka S, Koike T, Hirahara Y, Seki-Omura R, Kakizaki R, Sakamoto S, Nakano Y, Noda Y, Yamada H, Kitada M. Cytoplasmic Polyadenylation Element-Binding Protein 1 Post-transcriptionally Regulates Fragile X Mental Retardation 1 Expression Through 3′ Untranslated Region in Central Nervous System Neurons. Front Cell Neurosci 2022; 16:869398. [PMID: 35496917 PMCID: PMC9051318 DOI: 10.3389/fncel.2022.869398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual disability caused by a deficiency in Fragile X mental retardation 1 (Fmr1) gene expression. Recent studies have proposed the importance of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in FXS pathology; however, the molecular interaction between Fmr1 mRNA and CPEB1 has not been fully investigated. Here, we revealed that CPEB1 co-localized and interacted with Fmr1 mRNA in hippocampal and cerebellar neurons and culture cells. Furthermore, CPEB1 knockdown upregulated Fmr1 mRNA and protein levels and caused aberrant localization of Fragile X mental retardation protein in neurons. In an FXS cell model, CPEB1 knockdown upregulated the mRNA levels of several mitochondria-related genes and rescued the intracellular heat shock protein family A member 9 distribution. These findings suggest that CPEB1 post-transcriptionally regulated Fmr1 expression through the 3′ untranslated region, and that CPEB1 knockdown might affect mitochondrial function.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- *Correspondence: Souichi Oe,
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | | | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yosuke Nakano
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yasuko Noda
- Department of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Japan
| | - Hisao Yamada
- Biwako Professional University of Rehabilitation, Higashiomi, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- Masaaki Kitada,
| |
Collapse
|
4
|
Oe S, Hayashi S, Tanaka S, Koike T, Hirahara Y, Kakizaki R, Sakamoto S, Noda Y, Yamada H, Kitada M. Cpeb1 expression is post-transcriptionally regulated by AUF1, CPEB1, and microRNAs. FEBS Open Bio 2021; 12:82-94. [PMID: 34480525 PMCID: PMC8727934 DOI: 10.1002/2211-5463.13286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/04/2023] Open
Abstract
Cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates the translation of numerous mRNAs. We previously showed that AU‐rich binding factor 1 (AUF1) regulates Cpeb1 expression through the 3’ untranslated region (3’UTR). To investigate the molecular basis of the regulatory potential of the Cpeb1 3’UTR, here we performed reporter analyses that examined expression levels of Gfp reporter mRNA containing the Cpeb1 3’UTR. Our findings indicate that CPEB1 represses the translation of Cpeb1 mRNA and that miR‐145a‐5p and let‐7b‐5p are involved in the reduction in Cpeb1 expression in the absence of AUF1. These results suggest that Cpeb1 expression is post‐transcriptionally regulated by AUF1, CPEB1, and microRNAs.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yasuko Noda
- Department of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Japan
| | - Hisao Yamada
- Biwako Professional University of Rehabilitation, Higashi-Ohmi, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| |
Collapse
|