1
|
Kang K, Chen SH, Wang DP, Chen F. Inhibition of Endoplasmic Reticulum Stress Improves Chronic Ischemic Hippocampal Damage Associated with Suppression of IRE1α/TRAF2/ASK1/JNK-Dependent Apoptosis. Inflammation 2024; 47:1479-1490. [PMID: 38401021 PMCID: PMC11343861 DOI: 10.1007/s10753-024-01989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Chronic cerebral ischemia is a complex form of stress, of which the most common hemodynamic characteristic is chronic cerebral hypoperfusion (CCH). Lasting endoplasmic reticulum (ER) stress can drive neurological disorders. Targeting ER stress shows potential neuroprotective effects against stroke. However, the role of ER stress in CCH pathological processes and the effects of targeting ER stress on brain ischemia are unclear. Here, a CCH rat model was established by bilateral common carotid artery occlusion. Rats were treated with 4-PBA, URB597, or both for 4 weeks. Neuronal morphological damage was detected using hematoxylin-eosin staining. The expression levels of the ER stress-ASK1 cascade-related proteins GRP78, IRE1α, TRAF2, CHOP, Caspase-12, ASK1, p-ASK1, JNK, and p-JNK were assessed by Western blot. The mRNA levels of TNF-α, IL-1β, and iNOS were assessed by RT-PCR. For oxygen-glucose deprivation experiments, mouse hippocampal HT22 neurons were used. Apoptosis of the hippocampus and HT22 cells was detected by TUNEL staining and Annexin V-FITC analysis, respectively. CCH evoked ER stress with increased expression of GRP78, IRE1α, TRAF2, CHOP, and Caspase-12. Co-immunoprecipitation experiments confirmed the interaction between TRAF2 and ASK1. ASK1/JNK signaling, inflammatory cytokines, and neuronal apoptosis were enhanced, accompanied by persistent ER stress; these were reversed by 4-PBA and URB597. Furthermore, the ASK1 inhibitor GS4997 and 4-PBA displayed synergistic anti-apoptotic effects in cells with oxygen-glucose deprivation. In summary, ER stress-induced apoptosis in CCH is associated with the IRE1α/TRAF2/ASK1/JNK signaling pathway. Targeting the ER stress-ASK1 cascade could be a novel therapeutic approach for ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai, 200040, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, 330029, Jiangxi, China
| | - Da-Peng Wang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
2
|
Lian X, Zhang X, Chen W, Xue F, Wang G. Dexmedetomidine mitigates neuroinflammation in an Alzheimer's disease mouse model via the miR-204-3p/FBXL7 signaling axis. Brain Res 2024; 1822:148612. [PMID: 37778649 DOI: 10.1016/j.brainres.2023.148612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by neuroinflammation. Dexmedetomidine (Dex) is known for its neuroprotective properties in clinical settings. In this study, we investigated the potential of Dex in protecting against neuroinflammation in an AD mouse model induced by amyloid-beta (Aβ) injection. First, in the AD mouse model, Aβ injection were administered, and the model was confirmed through behavioral tests, including the Morris water maze and Y-maze. Neuroinflammatory states in Aβ-injected mice were assessed using hematoxylin and eosin staining and enzyme-linked immunosorbent assay. Expression levels of microRNA (miR)-204-3p and F-box/LRR-repeat protein 7 (FBXL7) in mouse tissues were determined through real-time quantitative polymerase chain reaction and Western blot. The binding interaction between miR-204-3p and FBXL7 was elucidated using dual-luciferase analysis. Aβ-injected mice exhibited cognitive impairment, neuroinflammation, and downregulated miR-204-3p. Upregulation of miR-204-3p reduced inflammatory infiltration and mitigated neuroinflammation in Aβ-injected mice. Dex treatment reduced inflammation in hippocampal tissues of Aβ-injected mice. Dex treatment upregulated miR-204-3p, leading to suppressed FBXL7 expression in tissues. Inhibition of miR-204-3p or overexpression of FBXL7 reversed the alleviating effect of Dex on neuroinflammation in Aβ-injected mice. Overall, Dex increased miR-204-3p expression, resulting in the inhibition of FBXL7, and subsequently alleviated neuroinflammation in Aβ-injected mice.
Collapse
Affiliation(s)
- Xia Lian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaomin Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenchao Chen
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fang Xue
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan 572000, China.
| |
Collapse
|
3
|
Ma Y, Wang W, Liu S, Qiao X, Xing Y, Zhou Q, Zhang Z. Epigenetic Regulation of Neuroinflammation in Alzheimer's Disease. Cells 2023; 13:79. [PMID: 38201283 PMCID: PMC10778497 DOI: 10.3390/cells13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease and clinically manifests with cognitive decline and behavioral disabilities. Over the past years, mounting studies have demonstrated that the inflammatory response plays a key role in the onset and development of AD, and neuroinflammation has been proposed as the third major pathological driving factor of AD, ranking after the two well-known core pathologies, amyloid β (Aβ) deposits and neurofibrillary tangles (NFTs). Epigenetic mechanisms, referring to heritable changes in gene expression independent of DNA sequence alterations, are crucial regulators of neuroinflammation which have emerged as potential therapeutic targets for AD. Upon regulation of transcriptional repression or activation, epigenetic modification profiles are closely involved in inflammatory gene expression and signaling pathways of neuronal differentiation and cognitive function in central nervous system disorders. In this review, we summarize the current knowledge about epigenetic control mechanisms with a focus on DNA and histone modifications involved in the regulation of inflammatory genes and signaling pathways in AD, and the inhibitors under clinical assessment are also discussed.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| |
Collapse
|
4
|
Zhou H, Astore C, Skolnick J. PHEVIR: an artificial intelligence algorithm that predicts the molecular role of pathogens in complex human diseases. Sci Rep 2022; 12:20889. [PMID: 36463386 PMCID: PMC9719543 DOI: 10.1038/s41598-022-25412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Infectious diseases are known to cause a wide variety of post-infection complications. However, it's been challenging to identify which diseases are most associated with a given pathogen infection. Using the recently developed LeMeDISCO approach that predicts comorbid diseases associated with a given set of putative mode of action (MOA) proteins and pathogen-human protein interactomes, we developed PHEVIR, an algorithm which predicts the corresponding human disease comorbidities of 312 viruses and 57 bacteria. These predictions provide an understanding of the molecular bases of complications and means of identifying appropriate drug targets to treat them. As an illustration of its power, PHEVIR is applied to identify putative driver pathogens and corresponding human MOA proteins for Type 2 diabetes, atherosclerosis, Alzheimer's disease, and inflammatory bowel disease. Additionally, we explore the origins of the oncogenicity/oncolyticity of certain pathogens and the relationship between heart disease and influenza. The full PHEVIR database is available at https://sites.gatech.edu/cssb/phevir/ .
Collapse
Affiliation(s)
- Hongyi Zhou
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA
| | - Courtney Astore
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA.
| |
Collapse
|
5
|
Anti-Inflammatory Activity of 4-(4-(Heptyloxy)phenyl)-2,4-dihydro-3 H-1,2,4-triazol-3-one via Repression of MAPK/NF-κB Signaling Pathways in β-Amyloid-Induced Alzheimer's Disease Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155035. [PMID: 35956985 PMCID: PMC9370156 DOI: 10.3390/molecules27155035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 01/03/2023]
Abstract
Alzheimer’s disease (AD) is a major neurodegenerative disease, but so far, it can only be treated symptomatically rather than changing the process of the disease. Recently, triazoles and their derivatives have been shown to have potential for the treatment of AD. In this study, the neuroprotective effects of 4-(4-(heptyloxy)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (W112) against β-amyloid (Aβ)-induced AD pathology and its possible mechanism were explored both in vitro and in vivo. The results showed that W112 exhibits a neuroprotective role against Aβ-induced cytotoxicity in PC12 cells and improves the learning and memory abilities of Aβ-induced AD-like rats. In addition, the assays of the protein expression revealed that W112 reversed tau hyperphosphorylation and reduced the production of proinflammatory cytokines, tumor necrosis factor-α and interleukin-6, both in vitro and in vivo studies. Further study indicated that the regulation of mitogen-activated protein kinase/nuclear factor-κB pathways played a key role in mediating the neuroprotective effects of W112 against AD-like pathology. W112 may become a potential drug for AD intervention.
Collapse
|
6
|
Chiang MC, Nicol CJB. GSH-AuNP anti-oxidative stress, ER stress and mitochondrial dysfunction in amyloid-beta peptide-treated human neural stem cells. Free Radic Biol Med 2022; 187:185-201. [PMID: 35660451 DOI: 10.1016/j.freeradbiomed.2022.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Amyloid-beta (Aβ) peptides have a role in the pathogenesis of Alzheimer's disease (AD) and are thought to promote oxidative stress, endoplasmic reticulum (ER) stress and mitochondrial deficiency, causing neuronal loss in the AD brain. The potential applications of glutathione conjugated gold nanoparticles (GSH-AuNPs) suggest they might have therapeutic value. Several studies have demonstrated that the effects of nanoparticles could provide protective roles in AD. Here, we showed that GSH-AuNPs mediate the viability of human neural stem cells (hNSCs) with Aβ, which was correlated with decreased caspase 3 and caspase 9. Importantly, hNSCs co-treated with GSH-AuNPs were significantly protected from Aβ-induced oxidative stress, as detected using the DCFH-DA, DHE, and MitoSOX staining assays. Furthermore, hNSCs co-treated with GSH-AuNPs were significantly protected from the Aβ-induced reduction in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 downstream antioxidant target genes (SOD-1, SOD-2, Gpx, Catalase, and HO-1). In addition, GSH-AuNPs rescued the expression levels of ER stress-associated genes (Bip, CHOP, and ASK1) in Aβ-treated hNSCs. GSH-AuNPs normalized ER calcium and mitochondrial cytochrome c homeostasis in Aβ-treated hNSCs. Furthermore, treatment with GSH-AuNPs restored the levels of ATP, D-loop, mitochondrial mass, basal respiration, ATP-linked reparation, maximal respiration capacity, COX activity, mitochondrial membrane potential, and mitochondrial genes (PGC1α, NRF-1 and Tfam) in Aβ-treated hNSCs. Taken together, these findings extend our understanding of the protective effects of GSH-AuNPs against oxidative stress, ER stress and mitochondrial dysfunction in hNSCs with Aβ.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada; Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
7
|
Lapresa R, Agulla J, Gonzalez-Guerrero S, Bolaños JP, Almeida A. Amyloid-β Induces Cdh1-Mediated Rock2 Stabilization Causing Neurodegeneration. Front Pharmacol 2022; 13:884470. [PMID: 35496276 PMCID: PMC9047900 DOI: 10.3389/fphar.2022.884470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, which is causally related to the accumulation of abnormally folded amyloid-β (Aβ) peptide and hyperphosphorylated tau protein aggregates. The dendritic spine regulator Rho protein kinase 2 (Rock2) accumulates in the brain at the earliest stages of AD and remains increased during disease progression. However, the molecular mechanism that upregulates Rock2 in AD, and its role in the disease progression, are unknown. Here, we found that oligomers of the amyloidogenic fragment 25–35 of the Aβ peptide (Aβ25-35) trigger Rock2 accumulation and activation in mouse cortical neurons in primary culture and in mouse hippocampus in vivo. Neuronal apoptotic death and memory impairment caused by Aβ25-35 administration were rescued by genetic and pharmacological inhibition of Rock2 activity. Mechanistically, Aβ25-35 elicited cyclin dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1, a cofactor that is essential for the activity of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) in neurons. Notably, phosphorylated Cdh1 was disassembled from the APC/C complex, causing its inactivation and subsequent Rock2 protein stabilization and activation. Moreover, Aβ25-35-induced neuronal apoptosis was prevented by expressing a phosphodefective form of Cdh1, but not by a phosphomimetic Cdh1. Finally, Cdh1 inactivation, using both genetic and pharmacological approaches, enhanced Aβ25-35-mediated neuronal death through a mechanism that was prevented by inhibition of Rock2 activity. These results indicate that the Cdk5-Cdh1 signaling pathway accounts for the increased Rock2 activity by amyloidogenic Aβ peptides and that this mechanism may contribute to neurodegeneration and memory loss in AD.
Collapse
Affiliation(s)
- Rebeca Lapresa
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Jesus Agulla
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Sonia Gonzalez-Guerrero
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
- *Correspondence: Angeles Almeida,
| |
Collapse
|