1
|
Liao M, Zhu X, Lu Y, Yi X, Hu Y, Zhao Y, Ye Z, Guo X, Liang M, Jin X, Zhang H, Wang X, Zhao Z, Chen Y, Yan H. Multi-omics profiling of retinal pigment epithelium reveals enhancer-driven activation of RANK-NFATc1 signaling in traumatic proliferative vitreoretinopathy. Nat Commun 2024; 15:7324. [PMID: 39183203 PMCID: PMC11345415 DOI: 10.1038/s41467-024-51624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
During the progression of proliferative vitreoretinopathy (PVR) following ocular trauma, previously quiescent retinal pigment epithelial (RPE) cells transition into a state of rapid proliferation, migration, and secretion. The elusive molecular mechanisms behind these changes have hindered the development of effective pharmacological treatments, presenting a pressing clinical challenge. In this study, by monitoring the dynamic changes in chromatin accessibility and various histone modifications, we chart the comprehensive epigenetic landscape of RPE cells in male mice subjected to traumatic PVR. Coupled with transcriptomic analysis, we reveal a robust correlation between enhancer activation and the upregulation of the PVR-associated gene programs. Furthermore, by constructing transcription factor regulatory networks, we identify the aberrant activation of enhancer-driven RANK-NFATc1 pathway as PVR advanced. Importantly, we demonstrate that intraocular interventions, including nanomedicines inhibiting enhancer activity, gene therapies targeting NFATc1 and antibody therapeutics against RANK pathway, effectively mitigate PVR progression. Together, our findings elucidate the epigenetic basis underlying the activation of PVR-associated genes during RPE cell fate transitions and offer promising therapeutic avenues targeting epigenetic modulation and the RANK-NFATc1 axis for PVR management.
Collapse
Affiliation(s)
- Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Youhui Hu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Zhisheng Ye
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Minghui Liang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
You W, Azuma K, Iwagawa T, Watanabe S, Aihara M, Shiraya T, Ueta T. The role of lipid peroxidation in epithelial-mesenchymal transition of retinal pigment epithelial cells. Sci Rep 2024; 14:16498. [PMID: 39020017 PMCID: PMC11255318 DOI: 10.1038/s41598-024-67587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) of retinal pigment epithelial (RPE) cells is recognized as pivotal in various retinal diseases. Previous studies have suggested a reciprocal regulation between reactive oxygen species (ROS) and EMT, though the involvement of peroxidized lipids or the effects of reducing them has remained unclear. The present study disclosed that EMT of ARPE-19 cells induced by TGF-β2 and TNF-α involves increased lipid peroxidation, and Ferrostatin-1 (Fer-1), a lipophilic antioxidative agent, successfully inhibited the increase in lipid peroxidation. Fer-1 suppressed the formation of EMT-associated fibrotic deposits, while EMT induction or Fer-1 treatment did not influence the cell viability or proliferation. Functionally, Fer-1 impeded EMT-driven cell migration and reduction in transepithelial electrical resistance. It demonstrated regulatory prowess by downregulating the mesenchymal marker fibronectin, upregulating the epithelial marker ZO-1, and inhibiting the EMT-associated transcriptional factor ZEB1. Additionally, VEGF, a major pathogenic cytokine in various retinal diseases, is also upregulated during EMT, and Fer-1 significantly mitigated the effect. The present study disclosed the involvement of lipid peroxidation in EMT of RPE cells, and suggests the suppression of lipid peroxidation may be a potential therapeutic target in retinal diseases in which EMT is implicated.
Collapse
Affiliation(s)
- Wang You
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Kunihiro Azuma
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Tomoyasu Shiraya
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Takashi Ueta
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
3
|
Yang X, Sun F, Gao Y, Li M, Liu M, Wei Y, Jie Q, Wang Y, Mei J, Mei J, Ma L, Shi Y, Chen M, Li Y, Li Q, Liu M, Ma Y. Histone acetyltransferase CSRP2BP promotes the epithelial-mesenchymal transition and metastasis of cervical cancer cells by activating N-cadherin. J Exp Clin Cancer Res 2023; 42:268. [PMID: 37845756 PMCID: PMC10580587 DOI: 10.1186/s13046-023-02839-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Dysregulated epithelial-mesenchymal transition (EMT) is involved in cervical cancer metastasis and associated with histone acetylation. However, the underlying molecular mechanisms of histone acetylation in cervical cancer EMT and metastasis are still elusive. METHODS We systematically investigated the expression patterns of histone acetylation genes and their correlations with the EMT pathway in cervical cancer. The expression of CSRP2BP among cervical cancer tissues and cell lines was detected using Western blotting and immunohistochemistry analyses. The effects of CSRP2BP on cervical cancer cell proliferation and tumorigenicity were examined by cell growth curve, EdU assay, flow cytometry and xenotransplantation assays. Wound healing assays, transwell migration assays and pulmonary metastasis model were used to evaluate the effects of CSRP2BP on cell invasion and metastasis of cervical cancer cells in vivo and in vitro. RNA-seq, chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP) and luciferase reporter assays were used to uncover the molecular mechanisms of CSRP2BP in promoting cervical cancer EMT and metastasis. RESULTS We prioritized a top candidate histone acetyltransferase, CSRP2BP, as a key player in cervical cancer EMT and metastasis. The expression of CSRP2BP was significantly increased in cervical cancer tissues and high CSRP2BP expression was associated with poor prognosis. Overexpression of CSRP2BP promoted cervical cancer cell proliferation and metastasis both in vitro and in vivo, while knockdown of CSRP2BP obtained the opposite effects. In addition, CSRP2BP promoted resistance to cisplatin chemotherapy. Mechanistically, CSRP2BP mediated histone 4 acetylation at lysine sites 5 and 12, cooperated with the transcription factor SMAD4 to bind to the SEB2 sequence in the N-cadherin gene promotor and upregulated N-cadherin transcription. Consequently, CSRP2BP promoted cervical cancer cell EMT and metastasis through activating N-cadherin. CONCLUSIONS This study demonstrates that the histone acetyltransferase CSRP2BP promotes cervical cancer metastasis partially through increasing the EMT and suggests that CSRP2BP could be a prognostic marker and a potential therapeutic target for combating cervical cancer metastasis.
Collapse
Affiliation(s)
- Xiaohui Yang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Fei Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
- Department of Obstetrics and Gynecology, Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangdong, 510515, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - MengYongwei Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Mian Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
- Department of Obstetrics and Gynecology, Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangdong, 510515, China
| | - Yunjian Wei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Qiuling Jie
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Yibing Wang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Jiaoqi Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Jingjing Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Linna Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Yuechuan Shi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Manling Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China.
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China.
- Hainan Modern Women and Children's Hospital, Reproductive Medicine, Haikou, Hainan, 571101, China.
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China.
| |
Collapse
|
4
|
Hamuro J, Yamashita T, Otsuki Y, Hiramoto N, Adachi M, Miyatani T, Tanaka H, Ueno M, Kinoshita S, Sotozono C. Spatiotemporal Coordination of RPE Cell Quality by Extracellular Vesicle miR-494-3p Via Competitive Interplays With SIRT3 or PTEN. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 37163276 PMCID: PMC10179576 DOI: 10.1167/iovs.64.5.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Purpose To reveal the molecular mechanism underlying degeneration in human retinal pigment epithelial (hRPE) cells with dysfunctional mitochondrial homeostasis. Methods The expression of recently identified miR-494-3p in extracellular vesicles (EV) released from induced-pluripotential-stem-cell-derived human RPE (iPS-hRPE), during coculture with macrophages (Mps) was investigated in iPS-hRPE and ARPE cells differentiated in the presence of nicotinamide (Nic-ARPE). The expression of phosphatase and tensin homolog (PTEN), sirtuin3 (SIRT3), and mitochondrial marker proteins before and after the transfection of miR-494-3p inhibitor and mimic, and the changes in mitochondrial metabolism, membrane potential, and oxidative phosphorylation (OXPHOS) were monitored. Results Compared with senescent dedifferentiated ARPE19 cells, iPS-hRPE and Nic-ARPE cells expressed elevated levels of mitochondrial marker proteins but a repressed cellular miR-494-3p level. The expression of target proteins of miR-494-3p, PTEN, and SIRT3 was upregulated along with the differentiation disposition of these RPE cells. The ratio of PTEN/SIRT3 in de-differentiated ARPE19 cells was surprisingly elevated by around 20 times compared with that in iPS-hRPE and Nic-ARPE cells. The novel molecular interplay of EV miR-494-3p either with mitochondria selective SIRT3 or organelle nonselective PTEN was found to participate in the degeneration of hRPE cells by inducing mitochondrial dysfunctions and repressed OXPHOS, mitochondrial membrane potential, and ATP and NAD+ production. Conclusions Our results demonstrate a clear causal link between miR-494-3p and hRPE cell degeneration via the regulation of mitochondrial integrity. EV miR-494-3p may play a pivotal role in pathogenic spreading of degenerated hRPE cells from the local perifovea throughout the macula.
Collapse
Affiliation(s)
- Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Yamashita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Otsuki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nao Hiramoto
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayuka Adachi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takafumi Miyatani
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Tanaka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Liu J, Qian K, Qin Z, Alshehri MD, Li Q, Tai Y. Cloud computing-enabled IIOT system for neurosurgical simulation using augmented reality data access. Exp Eye Res 2022; 220:109085. [DOI: 10.1016/j.exer.2022.109085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022]
|
6
|
Liu ZW, Zhang YM, Zhang LY, Zhou T, Li YY, Zhou GC, Miao ZM, Shang M, He JP, Ding N, Liu YQ. Duality of Interactions Between TGF-β and TNF-α During Tumor Formation. Front Immunol 2022; 12:810286. [PMID: 35069596 PMCID: PMC8766837 DOI: 10.3389/fimmu.2021.810286] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment is essential for the formation and development of tumors. Cytokines in the microenvironment may affect the growth, metastasis and prognosis of tumors, and play different roles in different stages of tumors, of which transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α) are critical. The two have synergistic and antagonistic effect on tumor regulation. The inhibition of TGF-β can promote the formation rate of tumor, while TGF-β can promote the malignancy of tumor. TNF-α was initially determined to be a natural immune serum mediator that can induce tumor hemorrhagic necrosis, it has a wide range of biological activities and can be used clinically as a target to immune diseases as well as tumors. However, there are few reports on the interaction between the two in the tumor microenvironment. This paper combs the biological effect of the two in different aspects of different tumors. We summarized the changes and clinical medication rules of the two in different tissue cells, hoping to provide a new idea for the clinical application of the two cytokines.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China.,Gansu Institute of Cardiovascular Diseases, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ming Shang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jin-Peng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Nan- Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|