1
|
Gonuguntla S, Humphrey RK, Gorantla A, Hao E, Jhala US. Stress-induced pseudokinase TRB3 augments IL1β signaling by interacting with Flightless homolog 1. J Biol Chem 2023; 299:104803. [PMID: 37172723 PMCID: PMC10432976 DOI: 10.1016/j.jbc.2023.104803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Interleukin-1β is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1β-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1β-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1β signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1β receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1β signaling to augment the proinflammatory response in beta cells.
Collapse
Affiliation(s)
- Sumati Gonuguntla
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Rohan K Humphrey
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Akshita Gorantla
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Ergeng Hao
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Ulupi S Jhala
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Freitas IN, da Silva Jr JA, de Oliveira KM, Lourençoni Alves B, Dos Reis Araújo T, Camporez JP, Carneiro EM, Davel AP. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol (Lausanne) 2023; 14:1090039. [PMID: 36896173 PMCID: PMC9989466 DOI: 10.3389/fendo.2023.1090039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.
Collapse
Affiliation(s)
- Israelle Netto Freitas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- *Correspondence: Ana Paula Davel,
| |
Collapse
|
3
|
Shen M, Kang Y. Cancer fitness genes: emerging therapeutic targets for metastasis. Trends Cancer 2023; 9:69-82. [PMID: 36184492 DOI: 10.1016/j.trecan.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
Development of cancer therapeutics has traditionally focused on targeting driver oncogenes. Such an approach is limited by toxicity to normal tissues and treatment resistance. A class of 'cancer fitness genes' with crucial roles in metastasis have been identified. Elevated or altered activities of these genes do not directly cause cancer; instead, they relieve the stresses that tumor cells encounter and help them adapt to a changing microenvironment, thus facilitating tumor progression and metastasis. Importantly, as normal cells do not experience high levels of stress under physiological conditions, targeting cancer fitness genes is less likely to cause toxicity to noncancerous tissues. Here, we summarize the key features and function of cancer fitness genes and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Pharmacology, Wayne State University School of Medicine, Michigan, MI, USA; Department of Oncology, Wayne State University School of Medicine and Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Michigan, MI, USA.
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|