1
|
Xiao K, Xv Z, Xv Y, Wang J, Xiao L, Kang Z, Zhu J, He Z, Huang G. H-type hypertension is a risk factor for chronic total coronary artery occlusion: a cross-sectional study from southwest China. BMC Cardiovasc Disord 2023; 23:301. [PMID: 37328790 PMCID: PMC10273712 DOI: 10.1186/s12872-023-03345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Chronic total coronary occlusion (CTO) is serious and the "last bastion" of percutaneous coronary intervention. Hypertension and hyperhomocysteinemia (HHCY) are synergistic and significantly increase cardiovascular event risk. The relationship between H-type hypertension and CTO remains unclear; thus, this cross-sectional study investigated this potential association. METHODS Between January 2018 and June 2022, 1446 individuals from southwest China were recruited to participate in this study. CTO was defined as complete coronary artery occlusion persisting for over three months. H-type hypertension was defined as hypertension with plasma homocysteine levels ≥ 15 µmol/L. Multivariate logistic regression models were applied to assess the association between H-type hypertension and CTO. Receiver operating characteristic (ROC) curves were generated to determine the accuracy of H-type hypertension in predicting CTO. RESULTS Of the 1446 individuals, 397 had CTO, and 545 had H-type hypertension. After multivariate adjustment, the odds ratio (OR) for CTO in individuals with H-type hypertension was 2.3-fold higher (95% CI 1.01-5.26) than that in healthy controls. The risk of CTO is higher in individuals with H-type hypertension than in those with isolated HHCY and hypertension. The area under the ROC curve for CTO was 0.685 (95% CI, 0.653-0.717) for H-type hypertension. CONCLUSIONS In southwest China, H-type hypertension is significantly related to the occurrence of CTO. TRIAL REGISTRATION This retrospective study was registered with the Chinese Clinical Trials Registry ( http://www.chictr.org.cn , ChiCTR2100050519.2.2).
Collapse
Affiliation(s)
- Kaiyong Xiao
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China.
| | - Zhe Xv
- Department of Pediatric Medicine, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Yuling Xv
- Sterilization Supply Center, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Lian Xiao
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Zhou Kang
- Department of Medical Statistics, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Jianhui Zhu
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Zhongwei He
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Guan Huang
- Medical Laboratory Center, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| |
Collapse
|
2
|
Sun X, Liu N, Sun C, Xu Y, Ding D, Kong J. The inhibitory effect of vitamin D on myocardial homocysteine levels involves activation of Nrf2-mediated methionine synthase. J Steroid Biochem Mol Biol 2023; 231:106303. [PMID: 36990164 DOI: 10.1016/j.jsbmb.2023.106303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/18/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Homocysteine (Hcy) is a synthetic amino acid containing sulfhydryl group, which is an intermediate product of the deep metabolic pathway of methionine and cysteine. The abnormal increase in fasting plasma total Hcy concentration caused by various factors is called hyperhomocysteine (HHcy). HHcy is closely relevant to the occurrence and progression of diverse cardiovascular and cerebrovascular diseases, such as coronary heart disease, hypertension and diabetes, etc. Vitamin D/vitamin D receptor (VDR) pathway is pointed out that prevent cardiovascular disease by reducing serum homocysteine levels. Our research is designed to explore the potential mechanism of vitamin D in the prevention and treatment of HHcy. METHODS AND RESULTS The Hcy and 25(OH)D3 levels in mouse myocardial tissue, serum or myocardial cells were detected using ELISA kits. The expression levels of VDR, Nrf2 and methionine synthase (MTR) were observed using Western blotting, immunohistochemistry and real time polymerase chain reaction (PCR). General information of the mice, including diet, water intake and body weight, was recorded. Vitamin D up-regulated the mRNA and protein expression of Nrf2 and MTR in mouse myocardial tissue and cells. CHIP assay determined that the combination of Nrf2 binding to the S1 site of the MTR promoter in cardiomyocytes using traditional PCR and real time PCR. Dual Luciferase Assay was applied to detect the transcriptional control of Nrf2 on MTR. The up-regulation effect of Nrf2 on MTR was verified by Nrf2 knockout and overexpression in cardiomyocytes. The role of Nrf2 in vitamin D inhibition of Hcy was revealed using Nrf2-knockdown HL-1 cells and Nrf2 heterozygous mice. Western blotting, real time PCR, IHC staining and ELISA showed that Nrf2 deficiency could restrain the increase in MTR expression and the decrease in Hcy level induced by vitamin D. The transcriptional activities of Nrf2/MTR were activated by vitamin D/VDR with a decrease in Hcy. CONCLUSION Vitamin D/VDR upregulates MTR in an Nrf2-dependent manner, thereby reducing the risk of HHcy.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Can Sun
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ding Ding
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
3
|
Homocysteine as a Predictor of Paroxysmal Atrial Fibrillation-Related Events: A Scoping Review of the Literature. Diagnostics (Basel) 2022; 12:diagnostics12092192. [PMID: 36140593 PMCID: PMC9498051 DOI: 10.3390/diagnostics12092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/06/2022] Open
Abstract
High levels of homocysteine (Hcy) have been linked with adverse cardiovascular outcomes, such as arrhythmias and stroke. In the context of paroxysmal atrial fibrillation (PAF), hyperhomocysteinemia has been demonstrated to be an independent predictor of future events. The aim of this report was to address the potential value of Hcy levels in predicting future paroxysms of atrial fibrillation (AF), as well as to identify the potential mechanisms of action. We searched PubMed and the Cochrane Database on 16 January 2022. Keywords used were homocysteine or hyperhomocysteinemia paired with a total of 67 different keywords or phrases that have been implicated with the pathogenesis of AF. We included primary reports of clinical and non-clinical data in the English language, as well as systematic reviews with or without meta-analyses. We placed no time constraints on our search strategy, which yielded 3748 results. Following title review, 3293 reports were excluded and 455 reports were used for title and abstract review, after which 109 reports were finally used for full-text review. Our review indicates that Hcy levels seem to hold a predictive value in PAF. Herein, potential mechanisms of action are presented and special considerations are made for clinically relevant diagnostic procedures that could complement plasma levels in the prediction of future PAF events. Finally, gaps of evidence are identified and considerations for future clinical trial design are presented.
Collapse
|
4
|
Cheng L, Maboh RN, Wang H, Mao GW, Wu XY, Chen H. Naoxintong Capsule Activates the Nrf2/HO-1 Signaling Pathway and Suppresses the p38α Signaling Pathway Via Estrogen Receptors to Ameliorate Heart Remodeling in Female Mice With Postmenopausal Hypertension. J Cardiovasc Pharmacol 2022; 80:158-170. [PMID: 35500215 DOI: 10.1097/fjc.0000000000001285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Limited treatments are available for alleviating heart remodeling in postmenopausal hypertension. The cardioprotective effect of naoxintong (NXT) has been widely accepted. This study aimed to explore the effects of NXT on pathological heart remodeling in a postmenopausal hypertension mouse model in vivo and H9c2 cardiomyocytes in vitro. In vivo, ovariectomy combined with chronic angiotensin II infusion was used to establish the postmenopausal hypertension animal model. NXT significantly ameliorated cardiac remodeling as indicated by a reduced ratio of heart weight/body weight and left ventricle weight/body weight, left ventricular wall thickness, diameter of cardiomyocytes, and collagen deposition in the heart. NXT also significantly increased the expression of estrogen receptors (ERs) and downregulated the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2). In vitro, NXT treatment greatly suppressed angiotensin II-induced cardiac hypertrophy, cardiac fibrosis, and excessive oxidative stress as proven by reducing the diameter of H9c2 cardiomyocytes, expression of hypertrophy and fibrosis markers, intracellular reactive oxygen species, and oxidative enzymes. Mechanistically, NXT significantly upregulated the expression of ERs, which activated the Nrf2/HO-1 signaling pathway and inhibited the phosphorylation of the p38α pathway. Collectively, the results indicated that NXT administration might attenuate cardiac remodeling through upregulating the expression of ERs, which activated the Nrf2/HO-1 signaling pathway, inhibited the phosphorylation of the p38α signaling pathway, and reduced oxidative stress.
Collapse
Affiliation(s)
- Lan Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Rene Nfornah Maboh
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Huan Wang
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Gao-Wei Mao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Xiao-Ying Wu
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Hui Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and.,Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
5
|
Reduced Levels of H2S in Diabetes-Associated Osteoarthritis Are Linked to Hyperglycaemia, Nrf-2/HO-1 Signalling Downregulation and Chondrocyte Dysfunction. Antioxidants (Basel) 2022; 11:antiox11040628. [PMID: 35453313 PMCID: PMC9024787 DOI: 10.3390/antiox11040628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Different findings indicate that type 2 diabetes is an independent risk factor for osteoarthritis (OA). However, the mechanisms underlying the connection between both diseases remain unclear. Changes in the balance of hydrogen sulphide (H2S) are thought to play an important role in the pathogenesis of diabetes and its complications, although its role is still controversial. In this study, we examined the modulation of H2S levels in serum and chondrocytes from OA diabetic (DB) and non-diabetic (non-DB) patients and in cells under glucose stress, in order to elucidate whether impairment in H2S-mediated signalling could participate in the onset of DB-related OA. Here, we identified a reduction in H2S synthesis in the cartilage from OA-DB patients and in cells under glucose stress, which is associated with hyperglycaemia-mediated dysregulation of chondrocyte metabolism. In addition, our results indicate that H2S is an inductor of the Nrf-2/HO-1 signalling pathway in cartilage, but is also a downstream target of Nrf-2 transcriptional activity. Thereby, impairment of the H2S/Nrf-2 axis under glucose stress or DB triggers chondrocyte catabolic responses, favouring the disruption of cartilage homeostasis that characterizes OA pathology. Finally, our findings highlight the benefits of the use of exogeneous sources of H2S in the treatment of DB-OA patients, and warrant future clinical studies.
Collapse
|
6
|
Toxicological mechanism of large amount of copper supplementation: Effects on endoplasmic reticulum stress and mitochondria-mediated apoptosis by Nrf2/HO-1 pathway-induced oxidative stress in the porcine myocardium. J Inorg Biochem 2022; 230:111750. [DOI: 10.1016/j.jinorgbio.2022.111750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022]
|