1
|
Hua F, Bonzerato CG, Keller KR, Guo D, Luo J, Wojcikiewicz RJH. The erlin1/erlin2 complex binds to and stabilizes phosphatidylinositol 3-phosphate and regulates autophagy. Biochem Biophys Res Commun 2024; 731:150397. [PMID: 39018973 DOI: 10.1016/j.bbrc.2024.150397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The erlin1/erlin2 (E1/E2) complex is an endoplasmic reticulum membrane-located assemblage of the proteins erlin1 and erlin2. Here, we demonstrate direct and selective binding of phosphatidylinositol 3-phosphate (PI(3)P) to recombinant erlins and that disruption or deletion of the E1/E2 complex reduces HeLa cell PI(3)P levels by ∼50 %. This reduction correlated with a decrease in autophagic flux, with no effect on the endocytic pathway, and was not due to reduced VPS34 kinase activity, which is critical for maintaining steady-state PI(3)P levels. Pharmacological inhibition of VPS34 and suppression of PI(3)P levels caused a similar reduction in autophagic flux. Overall, these data indicate that by binding to PI(3)P, the E1/E2 complex plays an important role in maintaining the steady-state levels of PI(3)P and, thus, sustains some key PI(3)P-dependent processes, e.g., autophagy.
Collapse
Affiliation(s)
- Fanghui Hua
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | |
Collapse
|
2
|
Cauwelier C, de Ridder I, Bultynck G. Recent advances in canonical versus non-canonical Ca 2+-signaling-related anti-apoptotic Bcl-2 functions and prospects for cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119713. [PMID: 38521468 DOI: 10.1016/j.bbamcr.2024.119713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cell fate is tightly controlled by a continuous balance between cell survival and cell death inducing mechanisms. B-cell lymphoma 2 (Bcl-2)-family members, composed of effectors and regulators, not only control apoptosis at the level of the mitochondria but also by impacting the intracellular Ca2+ homeostasis and dynamics. On the one hand, anti-apoptotic protein Bcl-2, prevents mitochondrial outer membrane permeabilization (MOMP) by scaffolding and neutralizing proapoptotic Bcl-2-family members via its hydrophobic cleft (region composed of BH-domain 1-3). On the other hand, Bcl-2 suppress pro-apoptotic Ca2+ signals by binding and inhibiting IP3 receptors via its BH4 domain, which is structurally exiled from the hydrophobic cleft by a flexible loop region (FLR). As such, Bcl-2 prevents excessive Ca2+ transfer from ER to mitochondria. Whereas regulation of both pathways requires different functional regions of Bcl-2, both seem to be connected in cancers that overexpress Bcl-2 in a life-promoting dependent manner. Here we discuss the anti-apoptotic canonical and non-canonical role, via calcium signaling, of Bcl-2 in health and cancer and evolving from this the proposed anti-cancer therapies with their shortcomings. We also argue how some cancers, with the major focus on diffuse large B-cell lymphoma (DLBCL) are difficult to treat, although theoretically prime marked for Bcl-2-targeting therapeutics. Further work is needed to understand the non-canonical functions of Bcl-2 also at organelles beyond the mitochondria, the interaction partners outside the Bcl-2 family as well as their ability to target or exploit these functions as therapeutic strategies in diseases.
Collapse
Affiliation(s)
- Claire Cauwelier
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ian de Ridder
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Suraweera CD, Espinoza B, Hinds MG, Kvansakul M. Mastering Death: The Roles of Viral Bcl-2 in dsDNA Viruses. Viruses 2024; 16:879. [PMID: 38932171 PMCID: PMC11209288 DOI: 10.3390/v16060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| | - Benjamin Espinoza
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marc Kvansakul
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
4
|
Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays 2023; 45:e2200221. [PMID: 36650950 PMCID: PMC9975053 DOI: 10.1002/bies.202200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The pore-forming BCL-2 family proteins are effectors of mitochondrial poration in apoptosis initiation. Two atypical effectors-BOK and truncated BID (tBID)-join the canonical effectors BAK and BAX. Gene knockout revealed developmental phenotypes in the absence the effectors, supporting their roles in vivo. During apoptosis effectors are activated and change shape from dormant monomers to dynamic oligomers that associate with and permeabilize mitochondria. BID is activated by proteolysis, BOK accumulates on inhibition of its degradation by the E3 ligase gp78, while BAK and BAX undergo direct activation by BH3-only initiators, autoactivation, and crossactivation. Except tBID, effector oligomers on the mitochondria appear as arcs and rings in super-resolution microscopy images. The BH3-in-groove dimers of BAK and BAX, the tBID monomers, and uncharacterized BOK species are the putative building blocks of apoptotic pores. Effectors interact with lipids and bilayers but the mechanism of membrane poration remains elusive. I discuss effector-mediated mitochondrial poration.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences,Correspondence:
| |
Collapse
|
5
|
Bonzerato CG, Wojcikiewicz RJH. Bok: real killer or bystander with non-apoptotic roles? Front Cell Dev Biol 2023; 11:1161910. [PMID: 37123400 PMCID: PMC10130511 DOI: 10.3389/fcell.2023.1161910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bcl-2-related ovarian killer, Bok, was first labeled "pro-apoptotic" due to its ability to cause cell death when over-expressed. However, it has become apparent that this is not a good name, since Bok is widely expressed in tissues other than ovaries. Further, there is serious doubt as to whether Bok is a real "killer," due to disparities in the ability of over-expressed versus endogenous Bok to trigger apoptosis. In this brief review, we rationalize these disparities and argue that endogenous Bok is very different from the pro-apoptotic, mitochondrial outer membrane permeabilization mediators, Bak and Bax. Instead, Bok is a stable, endoplasmic reticulum-located protein bound to inositol 1,4,5 trisphosphate receptors. From this location, Bok plays a variety of roles, including regulation of endoplasmic reticulum/mitochondria contact sites and mitochondrial dynamics. Therefore, categorizing Bok as a "killer" may well be misleading and instead, endogenous Bok would better be considered an endoplasmic reticulum-located "bystander", with non-apoptotic roles.
Collapse
|
6
|
Bonzerato CG, Keller KR, Schulman JJ, Gao X, Szczesniak LM, Wojcikiewicz RJH. Endogenous Bok is stable at the endoplasmic reticulum membrane and does not mediate proteasome inhibitor-induced apoptosis. Front Cell Dev Biol 2022; 10:1094302. [PMID: 36601536 PMCID: PMC9806350 DOI: 10.3389/fcell.2022.1094302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Controversy surrounds the cellular role of the Bcl-2 family protein Bok. On one hand, it has been shown that all endogenous Bok is bound to inositol 1,4,5-trisphosphate receptors (IP3Rs), while other data suggest that Bok can act as a pro-apoptotic mitochondrial outer membrane permeabilization mediator, apparently kept at very low and non-apoptotic levels by efficient proteasome-mediated degradation. Here we show that 1) endogenous Bok is expressed at readily-detectable levels in key cultured cells (e.g., mouse embryonic fibroblasts and HCT116 cells) and is not constitutively degraded by the proteasome, 2) proteasome inhibitor-induced apoptosis is not mediated by Bok, 3) endogenous Bok expression level is critically dependent on the presence of IP3Rs, 4) endogenous Bok is rapidly degraded by the ubiquitin-proteasome pathway in the absence of IP3Rs at the endoplasmic reticulum membrane, and 5) charged residues in the transmembrane region of Bok affect its stability, ability to interact with Mcl-1, and pro-apoptotic activity when over-expressed. Overall, these data indicate that endogenous Bok levels are not governed by proteasomal activity (except when IP3Rs are deleted) and that while endogenous Bok plays little or no role in apoptotic signaling, exogenous Bok can mediate apoptosis in a manner dependent on its transmembrane domain.
Collapse
|
7
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|