1
|
Agbana S, McIlroy M. Extra-nuclear and cytoplasmic steroid receptor signalling in hormone dependent cancers. J Steroid Biochem Mol Biol 2024; 243:106559. [PMID: 38823459 DOI: 10.1016/j.jsbmb.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.
Collapse
Affiliation(s)
- Stephanie Agbana
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland
| | - Marie McIlroy
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland.
| |
Collapse
|
2
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Hokimoto S, Funakoshi-Tago M, Tago K. Identification of DDX5 as an indispensable activator of the glucocorticoid receptor in adipocyte differentiation. FEBS J 2023; 290:988-1007. [PMID: 36071319 DOI: 10.1111/febs.16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
The expression of CCAAT/enhancer-binding protein (C/EBP) family members and peroxisome proliferator-activated receptor γ (PPAR γ) is essential for the differentiation of pre-adipocyte 3T3-L1 cells into mature adipocytes induced by a combined stimulation with dexamethasone, 3-isobutyl-1-methylxanthine and insulin (DMI). We herein demonstrated that the RNA helicase DDX5, the expression of which was induced by DMI, played an important role in the adipocyte differentiation of 3T3-L1 cells. The DMI-induced accumulation of lipid droplets and expression of adipocyte markers in 3T3-L1 cells were significantly inhibited by the knockdown of DDX5. The knockdown of DDX5 interfered with the expressional induction of C/EBPδ, which was the first to be induced in the transcription factor cascade, and inhibited the subsequent expression of the other transcription factors, C/EBPβ, PPARγ and C/EBPα. DDX5 interacted with the glucocorticoid receptor (GR), which induced the expression of C/EBPδ. The knockdown of DDX5 failed to induce the nuclear translocation of GR, suggesting the essential role of DDX5 in the early stage of adipocyte differentiation. Furthermore, the reconstitution of DDX5, but not the DDX5 mutant (K144N) lacking RNA helicase activity, restored DMI-induced GR activation and adipocyte differentiation in 3T3-L1 cells in which DDX5 was knocked down, confirming that the RNA helicase activity of DDX5 is essential for adipogenesis. Collectively, these results revealed for the first time that DDX5 is necessary for GR activation and plays an essential role in early adipocyte differentiation.
Collapse
Affiliation(s)
- Shingo Hokimoto
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke-shi, Japan
| |
Collapse
|
4
|
Yokobori K, Negishi M. Ser815 Phosphorylation stabilizes the androgen receptor homodimer and stimulates ER-stress induced cell death. Biochem Biophys Res Commun 2023; 639:54-61. [PMID: 36470072 PMCID: PMC9805519 DOI: 10.1016/j.bbrc.2022.11.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Androgen receptor, which regulates diverse biological processes for cell fate decisions, forms a homodimer in the cytoplasm and is monomerized by activation for nuclear translocation. Ser815 phosphorylated AR is expressed in mature prostates, with levels decreased by castration in mice or prostate cancer progression in humans. Here, we have examined the functional and biological roles of phosphorylation. AR phosphorylation at Ser815 stabilized homodimer formation in the cytoplasm, interrupting DHT-response nuclear translocation. cDNA microarray studies in castrated mouse prostates implied castration attenuates ER stress responses, suggesting AR phosphorylation acts on ER stress responses. In addition, AR Ser815Asp phospho-mimetic mutant expression augmented ER stress-induced death in PC-3 cells. These results suggested that phosphorylation at AR Ser815 modulates AR functions for maintaining the prostate.
Collapse
Affiliation(s)
- Kosuke Yokobori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
5
|
Kang BW, Kim F, Cho JY, Kim S, Rhee J, Choung JJ. Phosphodiesterase 5 inhibitor mirodenafil ameliorates Alzheimer-like pathology and symptoms by multimodal actions. Alzheimers Res Ther 2022; 14:92. [PMID: 35804462 PMCID: PMC9264543 DOI: 10.1186/s13195-022-01034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
Background Alzheimer’s disease (AD) pathology is associated with complex interactions among multiple factors, involving an intertwined network of various signaling pathways. The polypharmacological approach is an emerging therapeutic strategy that has been proposed to overcome the multifactorial nature of AD by targeting multiple pathophysiological factors including amyloid-β (Aβ) and phosphorylated tau. We evaluated a blood-brain barrier penetrating phosphodiesterase 5 (PDE5) inhibitor, mirodenafil (5-ethyl-2-7-n-propyl-3,5-dihydrro-4H-pyrrolo[3,2-d]pyrimidin-4-one), for its therapeutic effects on AD with polypharmacological properties. Methods To evaluate the potential of mirodenafil as a disease-modifying AD agent, mirodenafil was administered to test its effects on the cognitive behaviors of the APP-C105 AD mouse model using the Morris water maze and passive avoidance tests. To investigate the mechanisms of action that underlie the beneficial disease-modifying effects of mirodenafil, human neuroblastoma SH-SY5Y cells and mouse hippocampal HT-22 cells were used to show mirodenafil-induced alterations associated with the cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG)/cAMP-responsive element-binding protein (CREB) pathway, apoptotic cell death, tau phosphorylation, amyloidogenesis, the autophagy-lysosome pathway, glucocorticoid receptor (GR) transcriptional activity, and the Wnt/β-catenin signaling. Results Here, mirodenafil is demonstrated to improve cognitive behavior in the APP-C105 mouse model. Mirodenafil not only reduced the Aβ and phosphorylated tau burdens in vivo, but also ameliorated AD pathology induced by Aβ through the modulation of the cGMP/PKG/CREB signaling pathway, glycogen synthase kinase 3β (GSK-3β) activity, GR transcriptional activity, and the Wnt/β-catenin signaling in neuronal cells. Interestingly, homodimerization and nuclear localization of GR were inhibited by mirodenafil, but not by other PDE5 inhibitors. In addition, only mirodenafil reduced the expression levels of the Wnt antagonist Dickkopf-1 (Dkk-1), thus activating the Wnt/β-catenin signaling. Conclusions These findings strongly suggest that the PDE5 inhibitor mirodenafil shows promise as a potential polypharmacological drug candidate for AD treatment, acting on multiple key signaling pathways involved in amyloid deposition, phosphorylated tau burden, the cGMP/PKG/CREB pathway, GSK-3β kinase activity, GR signaling, and the Wnt/β-catenin signaling. Mirodenafil administration to the APP-C105 AD mouse model also improved cognitive behavior, demonstrating the potential of mirodenafil as a polypharmacological AD therapeutic agent. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01034-3.
Collapse
|
6
|
Lin Y, Wang H, Xu J, Huang Y, Gong W, Wang Q, Huang Z, Xie S, Lin J. High spatio-temporal resolution measurement of A 1 R and A 2A R interactions combined with Iem-spFRET and E-FRET methods. JOURNAL OF BIOPHOTONICS 2021; 14:e202100172. [PMID: 34328277 DOI: 10.1002/jbio.202100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
A1 R-A2A R heterodimers regulate striatal glutamatergic neurotransmission. However, few researches about kinetics have been reported. Here, we combined Iem-spFRET and E-FRET to investigate the kinetics of A1 R and A2A R interaction. Iem-spFRET obtains the energy transfer efficiency of the whole cell. E-FRET gets energy transfer efficiency with high spatial resolution, whereas, it was prone to biases because background was easily selected due to manual operation. To study the interaction with high spatio-temporal resolution, Iem-spFRET was used to correct the deviation of E-FRET. In this paper, A1 R and A2A R interaction was monitored, and the changes of FRET efficiency of the whole or/and partial cell membrane were described. The results showed that activation of A1 R or A2A R leads to rapid aggregation, inhibition of A1 R or A2A R leads to slow segregation, and the interaction is reversible. These results demonstrated that combination of Iem-spFRET and E-FRET could measure A1 R and A2A R interaction with high spatio-temporal resolution.
Collapse
Affiliation(s)
- Yating Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Haoyu Wang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianshu Xu
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yiming Huang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wei Gong
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Qiwen Wang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Zufang Huang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shusen Xie
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Juqiang Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| |
Collapse
|
7
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|