1
|
Scott DC, Chittori S, Purser N, King MT, Maiwald SA, Churion K, Nourse A, Lee C, Paulo JA, Miller DJ, Elledge SJ, Harper JW, Kleiger G, Schulman BA. Structural basis for C-degron selectivity across KLHDCX family E3 ubiquitin ligases. Nat Commun 2024; 15:9899. [PMID: 39548056 PMCID: PMC11568203 DOI: 10.1038/s41467-024-54126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Specificity of the ubiquitin-proteasome system depends on E3 ligase-substrate interactions. Many such pairings depend on E3 ligases binding to peptide-like sequences - termed N- or C-degrons - at the termini of substrates. However, our knowledge of structural features distinguishing closely related C-degron substrate-E3 pairings is limited. Here, by systematically comparing ubiquitylation activities towards a suite of common model substrates, and defining interactions by biochemistry, crystallography, and cryo-EM, we reveal principles of C-degron recognition across the KLHDCX family of Cullin-RING ligases (CRLs). First, a motif common across these E3 ligases anchors a substrate's C-terminus. However, distinct locations of this C-terminus anchor motif in different blades of the KLHDC2, KLHDC3, and KLHDC10 β-propellers establishes distinct relative positioning and molecular environments for substrate C-termini. Second, our structural data show KLHDC3 has a pre-formed pocket establishing preference for an Arg or Gln preceding a C-terminal Gly, whereas conformational malleability contributes to KLHDC10's recognition of varying features adjacent to substrate C-termini. Finally, additional non-consensus interactions, mediated by C-degron binding grooves and/or by distal propeller surfaces and substrate globular domains, can substantially impact substrate binding and ubiquitylatability. Overall, the data reveal combinatorial mechanisms determining specificity and plasticity of substrate recognition by KLDCX-family C-degron E3 ligases.
Collapse
Affiliation(s)
- Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sagar Chittori
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Moeko T King
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Samuel A Maiwald
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kelly Churion
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chan Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
2
|
Akhtar MN, Singh A, Manjunath LE, Dey D, Kumar SD, Vasu K, Das A, Eswarappa SM. Hominini-specific regulation of the cell cycle by stop codon readthrough of FEM1B. J Cell Sci 2024; 137:jcs261921. [PMID: 39140134 PMCID: PMC11385324 DOI: 10.1242/jcs.261921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
FEM1B is a substrate-recognition component of the CRL2 E3 ubiquitin-protein ligase. This multi-protein complex targets specific proteins for ubiquitylation, which leads to their degradation. Here, we demonstrate the regulation of FEM1B expression by stop codon readthrough (SCR). In this process, translating ribosomes readthrough the stop codon of FEM1B to generate a C-terminally extended isoform that is highly unstable. A total of 81 nucleotides in the proximal 3'UTR of FEM1B constitute the necessary and sufficient cis-signal for SCR. Also, they encode the amino acid sequence responsible for the degradation of the SCR product. CRISPR-edited cells lacking this region, and therefore SCR of FEM1B, showed increased FEM1B expression. This in turn resulted in reduced expression of SLBP (a target of FEM1B-mediated degradation) and replication-dependent histones (target of SLBP for mRNA stability), causing cell cycle delay. Evolutionary analysis revealed that this phenomenon is specific to the genus Pan and Homo (Hominini). Overall, we show a relatively recently evolved SCR process that relieves the cell cycle from the negative regulation by FEM1B.
Collapse
Affiliation(s)
- Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Lekha E. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Dhruba Dey
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Arpan Das
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sandeep M. Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
3
|
Wu Z, Huang Y, Liu K, Min J. N/C-degron pathways and inhibitor development for PROTAC applications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194952. [PMID: 37263341 DOI: 10.1016/j.bbagrm.2023.194952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Ubiquitination is a fascinating post-translational modification that has received continuous attention since its discovery. In this review, we first provide a concise overview of the E3 ubiquitin ligases, delving into classification, characteristics and mechanisms of ubiquitination. We then specifically examine the ubiquitination pathways mediated by the N/C-degrons, discussing their unique features and substrate recognition mechanisms. Finally, we offer insights into the current state of development pertaining to inhibitors that target the N/C-degron pathways, as well as the promising advances in the field of PROTAC (PROteolysis TArgeting Chimeras). Overall, this review offers a comprehensive understanding of the rapidly-evolving field of ubiquitin biology.
Collapse
Affiliation(s)
- Zhibin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
4
|
Zhao S, Olmayev-Yaakobov D, Ru W, Li S, Chen X, Zhang J, Yao X, Koren I, Zhang K, Xu C. Molecular basis for C-degron recognition by CRL2 APPBP2 ubiquitin ligase. Proc Natl Acad Sci U S A 2023; 120:e2308870120. [PMID: 37844242 PMCID: PMC10614623 DOI: 10.1073/pnas.2308870120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023] Open
Abstract
E3 ubiquitin ligases determine the specificity of eukaryotic protein degradation by selective binding to destabilizing protein motifs, termed degrons, in substrates for ubiquitin-mediated proteolysis. The exposed C-terminal residues of proteins can act as C-degrons that are recognized by distinct substrate receptors (SRs) as part of dedicated cullin-RING E3 ubiquitin ligase (CRL) complexes. APPBP2, an SR of Cullin 2-RING ligase (CRL2), has been shown to recognize R-x-x-G/C-degron; however, the molecular mechanism of recognition remains elusive. By solving several cryogenic electron microscopy structures of active CRL2APPBP2 bound with different R-x-x-G/C-degrons, we unveiled the molecular mechanisms underlying the assembly of the CRL2APPBP2 dimer and tetramer, as well as C-degron recognition. The structural study, complemented by binding experiments and cell-based assays, demonstrates that APPBP2 specifically recognizes the R-x-x-G/C-degron via a bipartite mechanism; arginine and glycine, which play critical roles in C-degron recognition, accommodate distinct pockets that are spaced by two residues. In addition, the binding pocket is deep enough to enable the interaction of APPBP2 with the motif placed at or up to three residues upstream of the C-end. Overall, our study not only provides structural insight into CRL2APPBP2-mediated protein turnover but also serves as the basis for future structure-based chemical probe design.
Collapse
Affiliation(s)
- Shidong Zhao
- Ministry of Education Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Peoples Republic of China
| | - Diana Olmayev-Yaakobov
- The Mina and Everard GoodmanFaculty of Life Sciences, Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Wenwen Ru
- Ministry of Education Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Peoples Republic of China
| | - Shanshan Li
- Ministry of Education Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Peoples Republic of China
| | - Xinyan Chen
- Ministry of Education Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Peoples Republic of China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Peoples Republic of China
| | - Xuebiao Yao
- Ministry of Education Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Peoples Republic of China
| | - Itay Koren
- The Mina and Everard GoodmanFaculty of Life Sciences, Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Kaiming Zhang
- Ministry of Education Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Peoples Republic of China
| | - Chao Xu
- Ministry of Education Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Peoples Republic of China
| |
Collapse
|
5
|
Timms RT, Mena EL, Leng Y, Li MZ, Tchasovnikarova IA, Koren I, Elledge SJ. Defining E3 ligase-substrate relationships through multiplex CRISPR screening. Nat Cell Biol 2023; 25:1535-1545. [PMID: 37735597 PMCID: PMC10567573 DOI: 10.1038/s41556-023-01229-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
Specificity within the ubiquitin-proteasome system is primarily achieved through E3 ubiquitin ligases, but for many E3s their substrates-and in particular the molecular features (degrons) that they recognize-remain largely unknown. Current approaches for assigning E3s to their cognate substrates are tedious and low throughput. Here we developed a multiplex CRISPR screening platform to assign E3 ligases to their cognate substrates at scale. A proof-of-principle multiplex screen successfully performed ~100 CRISPR screens in a single experiment, refining known C-degron pathways and identifying an additional pathway through which Cul2FEM1B targets C-terminal proline. Further, by identifying substrates for Cul1FBXO38, Cul2APPBP2, Cul3GAN, Cul3KLHL8, Cul3KLHL9/13 and Cul3KLHL15, we demonstrate that the approach is compatible with pools of full-length protein substrates of varying stabilities and, when combined with site-saturation mutagenesis, can assign E3 ligases to their cognate degron motifs. Thus, multiplex CRISPR screening will accelerate our understanding of how specificity is achieved within the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Richard T Timms
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elijah L Mena
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Mamie Z Li
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Iva A Tchasovnikarova
- Wellcome/CRUK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
6
|
Pla‐Prats C, Cavadini S, Kempf G, Thomä NH. Recognition of the CCT5 di-Glu degron by CRL4 DCAF12 is dependent on TRiC assembly. EMBO J 2023; 42:e112253. [PMID: 36715408 PMCID: PMC9929631 DOI: 10.15252/embj.2022112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Assembly Quality Control (AQC) E3 ubiquitin ligases target incomplete or incorrectly assembled protein complexes for degradation. The CUL4-RBX1-DDB1-DCAF12 (CRL4DCAF12 ) E3 ligase preferentially ubiquitinates proteins that carry a C-terminal double glutamate (di-Glu) motif. Reported CRL4DCAF12 di-Glu-containing substrates include CCT5, a subunit of the TRiC chaperonin. How DCAF12 engages its substrates and the functional relationship between CRL4DCAF12 and CCT5/TRiC is currently unknown. Here, we present the cryo-EM structure of the DDB1-DCAF12-CCT5 complex at 2.8 Å resolution. DCAF12 serves as a canonical WD40 DCAF substrate receptor and uses a positively charged pocket at the center of the β-propeller to bind the C-terminus of CCT5. DCAF12 specifically reads out the CCT5 di-Glu side chains, and contacts other visible degron amino acids through Van der Waals interactions. The CCT5 C-terminus is inaccessible in an assembled TRiC complex, and functional assays demonstrate that DCAF12 binds and ubiquitinates monomeric CCT5, but not CCT5 assembled into TRiC. Our biochemical and structural results suggest a previously unknown role for the CRL4DCAF12 E3 ligase in overseeing the assembly of a key cellular complex.
Collapse
Affiliation(s)
- Carlos Pla‐Prats
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
7
|
Liang X, Xiao J, Li X, Liu Y, Lu Y, Wen Y, Li Z, Che X, Ma Y, Zhang X, Zhang Y, Jian D, Wang P, Xuan C, Yu G, Li L, Zhang H. A C-terminal glutamine recognition mechanism revealed by E3 ligase TRIM7 structures. Nat Chem Biol 2022; 18:1214-1223. [PMID: 35982226 DOI: 10.1038/s41589-022-01128-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
The E3 ligase TRIM7 has emerged as a critical player in viral infection and pathogenesis. However, the mechanism governing the TRIM7-substrate association remains to be defined. Here we report the crystal structures of TRIM7 in complex with 2C peptides of human enterovirus. Structure-guided studies reveal the C-terminal glutamine residue of 2C as the primary determinant for TRIM7 binding. Leveraged by this finding, we identify norovirus and SARS-CoV-2 proteins, and physiological proteins, as new TRIM7 substrates. Crystal structures of TRIM7 in complex with multiple peptides derived from SARS-CoV-2 proteins display the same glutamine-end recognition mode. Furthermore, TRIM7 could trigger the ubiquitination and degradation of these substrates, possibly representing a new Gln/C-degron pathway. Together, these findings unveil a common recognition mode by TRIM7, providing the foundation for further mechanistic characterization of antiviral and cellular functions of TRIM7.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jun Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujie Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yao Lu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Wen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zexing Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | | | - Yongjian Ma
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xingyan Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Deng Jian
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenghao Xuan
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guimei Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Long Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Heng Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
A Comprehensive Review of BET-targeting PROTACs for Cancer Therapy. Bioorg Med Chem 2022; 73:117033. [DOI: 10.1016/j.bmc.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
9
|
Sherpa D, Chrustowicz J, Schulman BA. How the ends signal the end: Regulation by E3 ubiquitin ligases recognizing protein termini. Mol Cell 2022; 82:1424-1438. [PMID: 35247307 PMCID: PMC9098119 DOI: 10.1016/j.molcel.2022.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022]
Abstract
Specificity of eukaryotic protein degradation is determined by E3 ubiquitin ligases and their selective binding to protein motifs, termed "degrons," in substrates for ubiquitin-mediated proteolysis. From the discovery of the first substrate degron and the corresponding E3 to a flurry of recent studies enabled by modern systems and structural methods, it is clear that many regulatory pathways depend on E3s recognizing protein termini. Here, we review the structural basis for recognition of protein termini by E3s and how this recognition underlies biological regulation. Diverse E3s evolved to harness a substrate's N and/or C terminus (and often adjacent residues as well) in a sequence-specific manner. Regulation is achieved through selective activation of E3s and also through generation of degrons at ribosomes or by posttranslational means. Collectively, many E3 interactions with protein N and C termini enable intricate control of protein quality and responses to cellular signals.
Collapse
Affiliation(s)
- Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany.
| |
Collapse
|
10
|
Chrustowicz J, Sherpa D, Teyra J, Loke MS, Popowicz GM, Basquin J, Sattler M, Prabu JR, Sidhu SS, Schulman BA. Multifaceted N-Degron Recognition and Ubiquitylation by GID/CTLH E3 Ligases. J Mol Biol 2021; 434:167347. [PMID: 34767800 DOI: 10.1016/j.jmb.2021.167347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
N-degron E3 ubiquitin ligases recognize specific residues at the N-termini of substrates. Although molecular details of N-degron recognition are known for several E3 ligases, the range of N-terminal motifs that can bind a given E3 substrate binding domain remains unclear. Here, we discovered capacity of Gid4 and Gid10 substrate receptor subunits of yeast "GID"/human "CTLH" multiprotein E3 ligases to tightly bind a wide range of N-terminal residues whose recognition is determined in part by the downstream sequence context. Screening of phage displaying peptide libraries with exposed N-termini identified novel consensus motifs with non-Pro N-terminal residues binding Gid4 or Gid10 with high affinity. Structural data reveal that conformations of flexible loops in Gid4 and Gid10 complement sequences and folds of interacting peptides. Together with analysis of endogenous substrate degrons, the data show that degron identity, substrate domains harboring targeted lysines, and varying E3 ligase higher-order assemblies combinatorially determine efficiency of ubiquitylation and degradation.
Collapse
Affiliation(s)
- Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. https://twitter.com/chrustowicz_j
| | - Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. https://twitter.com/dawafutisherpa
| | - Joan Teyra
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mun Siong Loke
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Grzegorz M Popowicz
- Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Germany
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Michael Sattler
- Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. https://twitter.com/rajanprabu
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|