1
|
Ciebiera M, Kociuba J, Ali M, Madueke-Laveaux OS, Yang Q, Bączkowska M, Włodarczyk M, Żeber-Lubecka N, Zarychta E, Corachán A, Alkhrait S, Somayeh V, Malasevskaia I, Łoziński T, Laudański P, Spaczynski R, Jakiel G, Al-Hendy A. Uterine fibroids: current research on novel drug targets and innovative therapeutic strategies. Expert Opin Ther Targets 2024; 28:669-687. [PMID: 39136530 DOI: 10.1080/14728222.2024.2390094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Uterine fibroids, the most common nonmalignant tumors affecting the female genital tract, are a significant medical challenge. This article focuses on the most recent studies that attempted to identify novel non-hormonal therapeutic targets and strategies in UF therapy. AREAS COVERED This review covers the analysis of the pharmacological and biological mechanisms of the action of natural substances and the role of the microbiome in reference to UFs. This study aimed to determine the potential role of these compounds in UF prevention and therapy. EXPERT OPINION While there are numerous approaches for treating UFs, available drug therapies for disease control have not been optimized yet. This review highlights the biological potential of vitamin D, EGCG and other natural compounds, as well as the microbiome, as promising alternatives in UF management and prevention. Although these substances have been quite well analyzed in this area, we still recommend conducting further studies, particularly randomized ones, in the field of therapy with these compounds or probiotics. Alternatively, as the quality of data continues to improve, we propose the consideration of their integration into clinical practice, in alignment with the patient's preferences and consent.
Collapse
Affiliation(s)
- Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
- Warsaw Institute of Women's Health, Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, Rzeszow, Poland
| | - Jakub Kociuba
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
- Warsaw Institute of Women's Health, Warsaw, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | | | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Monika Bączkowska
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elżbieta Zarychta
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Ana Corachán
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Vafaei Somayeh
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | | | - Tomasz Łoziński
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, Rzeszow, Poland
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, Rzeszow, Poland
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
- Women's Health Research Institute, Calisia University, Kalisz, Poland
- OVIklinika Infertility Center, Warsaw, Poland
| | - Robert Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment, Poznan, Poland
- Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
3
|
Ali M, Stone D, Laknaur A, Yang Q, Al-Hendy A. EZH2 activates Wnt/β-catenin signaling in human uterine fibroids, which is inhibited by the natural compound methyl jasmonate. F&S SCIENCE 2023; 4:239-256. [PMID: 37182601 PMCID: PMC10527015 DOI: 10.1016/j.xfss.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To investigate the link between EZH2 and Wnt/β-catenin signaling and its role in uterine fibroids (UFs) pathogenesis and explore the potential effect of natural compound methyl jasmonate (MJ) against UFs. DESIGN EZH2 overexpression or inhibition was achieved in human uterine leiomyoma (HuLM) cells using EZH2-expressing adenovirus or chemical EZH2 inhibitor (DZNep), respectively. The HuLM and normal uterine smooth muscle cells were treated with 0.1-3 mM of MJ, and several experiments were employed. SETTING Laboratory study. PATIENTS(S) None. INTERVENTION(S) Methyl jasmonate. MAIN OUTCOME MEASURE(S) Protein expression of EZH2, β-catenin, and proliferating cell nuclear antigen (PCNA) was measured by Western blot as well as gene expression alterations of Wnt ligands (Wnt5A, Wnt5b, and Wnt9A), WISP1, CTNNB1, and its responsive gene PITX2 using quantitative real-time polymerase chain reaction. The protein and ribonucleic acid (RNA) levels of several markers were measured in MJ-treated or untreated HuLM cells, including EZH2 and β-catenin, extracellular matrix markers collagen type 1 (COL1A1) and fibronectin (FN), proliferation markers cyclin D1 (CCND1) and PCNA, tumor suppressor marker p21, and apoptotic markers (BAX, cytochrome c, and cleaved caspase 3). RESULT(S) EZH2 overexpression significantly increased the gene expression of several Wnt ligands (PITX2, WISP1, WNT5A, WNT5B, and WNT9A), which increased nuclear translocation of β-catenin and PCNA and eventually HuLM cell proliferation. EZH2 inhibition blocked Wnt/β-catenin signaling activation where the aforementioned genes significantly decreased as well as PCNA, cyclin D1, and PITX2 protein expression compared with those in untreated HuLM. Methyl jasmonate showed a potent antiproliferative effect on HuLM cells in a dose- and time-dependent manner. Interestingly, the dose range (0.1-0.5 mM) showed a selective growth inhibitory effect on HuLM cells, not on normal uterine smooth muscle cells. Methyl jasmonate treatment at 0.5 mM for 24 hours significantly decreased both protein and RNA levels of EZH2, β-catenin, COL1A1, FN, CCND1, PCNA, WISP1, and PITX2 but increased the protein levels of p21, BAX, cytochrome, c and cleaved caspase 3 compared with untreated HuLM. Methyl jasmonate-treated cells exhibited down-regulation in the RNA expression of 36 genes, including CTNNB1, CCND1, Wnt5A, Wnt5B, and Wnt9A, and up-regulation in the expression of 34 genes, including Wnt antagonist genes WIF1, PRICKlE1, and DKK1 compared with control, confirming the quantitative real-time polymerase chain reaction results. CONCLUSION(S) Our studies provide a novel link between EZH2 and the Wnt/β-catenin signaling pathway in UFs. Targeting EZH2 with MJ interferes with the activation of wnt/β-catenin signaling in our model. Methyl jasmonate may offer a promising therapeutic option as a nonhormonal and cost-effective treatment against UFs with favorable clinical utility, pending proven safe and efficient in human clinical trials.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois; Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - David Stone
- Department of hospital medicine, university of Colorado, Colorado Springs, Colorado
| | - Archana Laknaur
- Division of Translation Research, Augusta University, Augusta, Georgia
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois.
| |
Collapse
|