1
|
Gao H, Zhang C, Zhu B, Geng M, Tong J, Zhan Z, Zhang Y, Wu D, Huang K, Tao F. Associating prenatal phthalate exposure with childhood autistic traits: Investigating potential adverse outcome pathways and the modifying effects of maternal vitamin D. ECO-ENVIRONMENT & HEALTH 2024; 3:425-435. [PMID: 39559191 PMCID: PMC11570402 DOI: 10.1016/j.eehl.2024.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 11/20/2024]
Abstract
The association between prenatal phthalate mixture exposure and the risk of autism spectrum disorder (ASD) in children, as well as the potential mechanism and impact of maternal vitamin D, remains unclear. We analyzed data from 3209 mother-child pairs. The associations between prenatal phthalate exposure and autistic traits in children aged 1.5, 3, 5, and 6 years were explored. Furthermore, the modifying effects of maternal vitamin D and the adverse outcome pathway, which elucidates the contribution of phthalates to ASD, were estimated. Exposure to a phthalate mixture was associated with an increased risk of ASD in children aged 1.5-6 years. For mothers with 25(OH)D deficiency, an exposure‒response relationship was observed between phthalate mixtures in early to mid-pregnancy and autistic traits in children aged 3 years. However, this association was not observed for mothers with sufficient prenatal 25(OH)D levels. The potential mechanism of action of di(2-ethylhexyl) phthalate (DEHP) exposure may involve affecting GRIN2B, inhibiting NMDAR in the postsynaptic membrane, disrupting synaptic function, and impairing learning and memory, ultimately leading to ASD development. Importantly, maternal vitamin D supplementation was demonstrated to mitigate the risk of ASD associated with phthalate exposure. Reducing phthalate exposure during pregnancy may be associated with a decreased risk of autistic traits in children. Furthermore, adequate vitamin D supplementation could potentially mitigate the impact of phthalates on these traits. Additionally, the proposed biological mechanism provides insight into how phthalate exposure may contribute to the development of ASD.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Biostatistics, Anhui Provincial Cancer Institute, Hefei 230022, China
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Menglong Geng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Juan Tong
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Zixiang Zhan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yi Zhang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Fangbiao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Adam N, Desroziers E, Hanine R, Bascarane K, Naulé L, Mhaouty-Kodja S. Developmental exposure to environmentally relevant doses of phthalates alters the neural control of male and female reproduction in mice. ENVIRONMENTAL RESEARCH 2024; 258:119476. [PMID: 38909949 DOI: 10.1016/j.envres.2024.119476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The present study aims to analyze the effects of developmental exposure to phthalates at environmentally relevant doses on the neural control of male and female reproduction. For this purpose, C57Bl/6J mice were exposed to di-(2-ethylexyl) phthalate (DEHP) alone (5 or 50 μg/kg/d), or DEHP (5 μg/kg/d) in a phthalate mixture. Exposure through diet started 6 weeks before the first mating and lasted until weaning of litters from the second gestation (multiparous dams). Analyses of offspring born from multiparous dams exposed to DEHP alone or in a phthalate mixture showed that females experienced a delayed pubertal onset, and as adults they had prolonged estrous cyclicity and reduced Kiss1 expression in the preoptic area and mediobasal hypothalamus. Male littermates showed a reduced anogenital distance and delayed pubertal onset compared with controls. However, in adulthood the weight of androgen-sensitive organs and hypothalamic Kiss1 expression were unaffected, suggesting normal functioning of the male gonadotropic axis. Developmental exposure to DEHP alone or in a phthalate mixture reduced the ability of intact males and ovariectomized and hormonally primed females to attract a sexual partner and to express copulatory behaviors. In addition, females were unable to discriminate between male and female stimuli in the olfactory preference test. Social interaction was also impaired in females, while locomotor activity and anxiety-like behavior in both sexes were unaffected by the treatment. The sexual deficiencies were associated with reduced expression of the androgen receptor in the preoptic area and progesterone receptor in the mediobasal hypothalamus, the key regions involved in male and female sexual behavior, respectively. Thus, the neural structures controlling reproduction are vulnerable to developmental exposure to phthalates at environmentally relevant doses in male and female mice. Adult females had an impaired gonadotropic axis and showed more affected behaviors than adult males.
Collapse
Affiliation(s)
- Nolwenn Adam
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Elodie Desroziers
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Rita Hanine
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Karouna Bascarane
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
3
|
Cui K, Li L, Li K, Xiao W, Wang Q. AOP-based framework for predicting the joint action mode of di-(2-ethylhexyl) phthalate and bisphenol A co-exposure on autism spectrum disorder. Neurotoxicology 2024; 104:75-84. [PMID: 39084265 DOI: 10.1016/j.neuro.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder (ASD), also known as autism, is a common, highly hereditary and heterogeneous neurodevelopmental disorder. The global prevalence of ASD among children continues to rise significantly, which is partially attributed to environmental pollution. It has been reported that pre- or post-natal exposure to di-(2-ethylhexyl) phthalate (DEHP) or bisphenol A (BPA), two prevalent environmental endocrine disruptors, increases the risk of ASD in offspring. Yet, the joint action mode linking DEHP and BPA with ASD is incompletely understood. This study aims to unravel the joint action mode of DEHP and BPA co-exposure on the development of ASD. An adverse outcome pathway (AOP) framework was employed to integrate data from multiple public database and construct chemical-gene-phenotype-disease networks (CGPDN) for DEHP- and BPA-related ASD. Topological analysis and comprehensive literature exploration of the CGPDN were performed to build the AOP. By analysis of shared key events (KEs) or phenotypes within the AOP or the CGPDN, we uncovered two AOPs, decreased N-methyl-D-aspartate receptor (NMDAR) and estrogen antagonism that were likely linked to ASD, both with moderate confidence. Our analysis further predicted that the joint action mode of DEHP and BPA related ASD was possibly an additive or synergistic action. Thus, we propose that the co-exposure to BPA and DEHP perhaps additively or synergistically increases the risk of ASD.
Collapse
Affiliation(s)
- Kanglong Cui
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Kai Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
4
|
Casella R, Miniello A, Buta F, Yacoub MR, Nettis E, Pioggia G, Gangemi S. Atopic Dermatitis and Autism Spectrum Disorders: Common Role of Environmental and Clinical Co-Factors in the Onset and Severity of Their Clinical Course. Int J Mol Sci 2024; 25:8936. [PMID: 39201625 PMCID: PMC11354676 DOI: 10.3390/ijms25168936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Increasing evidence suggests an association between atopic dermatitis, the most chronic inflammatory disease of the skin, and autism spectrum disorders, which are a group of neurodevelopmental diseases. Inflammation and immune dysregulation associated with genetic and environmental factors seem to characterize the pathophysiological mechanisms of both conditions. We conducted a literature review of the PubMed database aimed at identifying the clinical features and alleged risk factors that could be used in clinical practice to predict the onset of ASD and/or AD or worsen their prognosis in the context of comorbidities.
Collapse
Affiliation(s)
- Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Federica Buta
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Hospital San Raffaele, 20132 Milan, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| |
Collapse
|
5
|
Zheng P, Pan C, Zhou C, Liu B, Wang L, Duan S, Ding Y. Contribution of Nischarin/IRAS in CNS development, injury and diseases. J Adv Res 2023; 54:43-57. [PMID: 36716956 DOI: 10.1016/j.jare.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Murine Nischarin and its human homolog IRAS are scaffold proteins highly expressed in the central nervous system (CNS). Nischarin was initially discovered as a tumor suppressor protein, and recent studies have also explored its potential value in the CNS. Research on IRAS has largely focused on its effect on opioid dependence. Although the role of Nischarin/IRAS in the physiological function and pathological process of the CNS has gradually attracted attention and the related research results are expected to be applied in clinical practice, there is no systematic review of the role and mechanisms of Nischarin/IRAS in the CNS so far. AIM OF REVIEW This review will systematically analyze the role and mechanism of Nischarin/IRAS in the CNS, and provide necessary references and possible targets for the treatment of neurological diseases, thereby broadening the direction of Nischarin/IRAS research and facilitating clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW The pathophysiological processes affected by dysregulation of Nischarin/IRAS expression in the CNS are mainly introduced, including spinal cord injury (SCI), opioid dependence, anxiety, depression, and autism. The molecular mechanisms such as factors regulating Nischarin/IRAS expression and signal transduction pathways regulated by Nischarin/IRAS are systematically summarized. Finally, the clinical application of Nischarin/IRAS has been prospected.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chenshu Pan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chuntao Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Bin Liu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| | - Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
6
|
Zhang J, Wang L, Liu M, Yu Z. Multi- and trans-generational effects of di-n-octyl phthalate on behavior, lifespan and reproduction of Caenorhabditis elegans through neural regulation and lipid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165268. [PMID: 37406686 DOI: 10.1016/j.scitotenv.2023.165268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Di-n-octyl phthalate (DOP) is one important phthalate analog whose toxicities need comprehensive investigation to fully demonstrate phthalates health risks. In the present study, apical effects of DOP on behavior, lifespan and reproduction and the underlying mechanisms were explored in Caenorhabditis elegans for four consecutive generations (F1 to F4) and the trans-generational effects were also measured in the great-grand-children (T4 and T4') of F1 and F4. Multi-generational results showed that DOP caused both stimulation and inhibition on head swing, body bending, reverse, Omega steering, pharyngeal pump and satiety quiescence. The stimulation and inhibition altered over concentrations and across generations, and the alteration was the greatest in reverse locomotion which showed both concentration-dependent hormesis and trans-hormesis. DOP stimulated lifespan and inhibited reproduction, showing trade-off relationships. Significant trans-generational residual effects were found in T4 and T4' where the exposure was completed eliminated. Moreover, both similar and different effects were found in comparisons between F1 and F4, between F1 and T4, between F4 and T4' and also between T4 and T4'. Further analysis showed close connections between effects of DOP on neurotransmitters (including dopamine, acetylcholine, γ-aminobutyric acid and serotonin) and enzymes in lipid metabolism (including lipase, acetyl CoA carboxylase, fatty acid synthetase, carnitine palmitoyl-transferase, glycerol phosphate acyltransferase and acetyl CoA synthetase). Moreover, the close connections were also found between biochemical and apical effects. Notably, the connections were different in multi- and trans-generational effects, which urged further studies to reveal the response strategies underlying the exposure scenarios.
Collapse
Affiliation(s)
- Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Lei Wang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| | - Mengbo Liu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Zhenyang Yu
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| |
Collapse
|
7
|
Cunha YGDO, do Amaral GCB, Felix AA, Blumberg B, Amato AA. Early-life exposure to endocrine-disrupting chemicals and autistic traits in childhood and adolescence: a systematic review of epidemiological studies. Front Endocrinol (Lausanne) 2023; 14:1184546. [PMID: 37361542 PMCID: PMC10289191 DOI: 10.3389/fendo.2023.1184546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Aims Exposure to endocrine-disrupting chemicals (EDCs) during critical neurodevelopmental windows has been associated with the risk of autistic traits. This systematic review of epidemiological studies examined the association between maternal exposure to EDCs during pregnancy and the risk of autism spectrum disorder (ASD) in the offspring. Methods We searched PubMed, Web of Science, Scopus, and Google Scholar from inception to November 17, 2022, for studies investigating the association between prenatal exposure to EDCs and outcomes related to ASD. Two independent reviewers screened studies for eligibility, extracted data, and assessed the risk of bias. The review was registered in PROSPERO (CRD42023389386). Results We included 27 observational studies assessing prenatal exposure to phthalates (8 studies), polychlorinated biphenyls (8 studies), organophosphate pesticides (8 studies), phenols (7 studies), perfluoroalkyl substances (6 studies), organochlorine pesticides (5 studies), brominated flame retardants (3 studies), dioxins (1 study), and parabens (1 study). The number of examined children ranged from 77 to 1,556, the age at the assessment of autistic traits ranged from 3 to 14 years, and most studies assessed autistic traits using the Social Responsiveness Scale. All but one study was considered to have a low risk of bias. Overall, there was no association between maternal exposure to specific ECDs during pregnancy and the occurrence of autistic traits in offspring. Conclusions Findings from the epidemiological studies evaluated here do not support an association between prenatal exposure to ECDs and the likelihood of autistic traits in later in life. These findings should not be interpreted as definitive evidence of the absence of neurodevelopment effects of EDCs affecting ASD risk, given the limitations of current studies such as representative exposure assessment, small sample sizes, inadequacy to assess sexually dimorphic effects, or the effects of EDC mixtures. Future studies should carefully address these limitations.
Collapse
Affiliation(s)
| | | | - Alana Almeida Felix
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Angelica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
8
|
Yang L, Zou J, Zang Z, Wang L, Du Z, Zhang D, Cai Y, Li M, Li Q, Gao J, Xu H, Fan X. Di-(2-ethylhexyl) phthalate exposure impairs cortical development in hESC-derived cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161251. [PMID: 36587670 DOI: 10.1016/j.scitotenv.2022.161251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous environmental endocrine disruptor, is widely used in consumer products. Increasing evidence implies that DEHP influences the early development of the human brain. However, it lacks a suitable model to evaluate the neurotoxicity of DEHP. Using an established human cerebral organoid model, which reproduces the morphogenesis of the human cerebral cortex at the early stage, we demonstrated that DEHP exposure markedly suppressed cell proliferation and increased apoptosis, thus impairing the morphogenesis of the human cerebral cortex. It showed that DEHP exposure disrupted neurogenesis and neural progenitor migration, confirmed by scratch assay and cell migration assay in vitro. These effects might result from DEHP-induced dysplasia of the radial glia cells (RGs), the fibers of which provide the scaffolds for cell migration. RNA sequencing (RNA-seq) analysis of human cerebral organoids showed that DEHP-induced disorder in cell-extracellular matrix (ECM) interactions might play a pivotal role in the neurogenesis of human cerebral organoids. The present study provides direct evidence of the neurodevelopmental toxicity of DEHP after prenatal exposure.
Collapse
Affiliation(s)
- Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
9
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Adam N, Lachayze MA, Parmentier C, Hardin-Pouzet H, Mhaouty-Kodja S. Exposure to environmentally relevant doses of plasticizers alters maternal behavior and related neuroendocrine processes in primiparous and multiparous female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120487. [PMID: 36273695 DOI: 10.1016/j.envpol.2022.120487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are organic pollutants frequently detected in the environment. The effects of these substances on male reproduction have been extensively studied but their potential impact on female reproductive behaviors in particular at environmental doses still remains to be documented. In the present study, we examined the effects of chronic exposure to di (2-ethylhexyl) phthalate (DEHP) alone at 5 or 50 μg/kg/d, or in an environmental phthalate mixture on maternal behavior of lactating female mice after a first (primiparous) and a second gestation (multiparous). Exposure of DEHP alone or in a phthalate mixture reduced pup-directed behaviors, increased self-care and forced nursing behaviors and altered nest quality for both primiparous and multiparous dams. In pup-retrieval test, primiparous and multiparous dams exposed to DEHP alone or in a phthalate mixture retrieved their pups more rapidly, probably due to a higher emission of ultrasonic vocalizations by the pups. At lactational day 2 following the third and last gestational period, the neural circuitry of maternal behavior was analyzed. A lower number of oxytocin-immunoreactive neurons in the paraventricular and anterior commissural nuclei was found in dams exposed to DEHP alone or in a phthalate mixture, while no changes were observed in the number of arginine-vasopressin immunoreactive cells. In the medial preoptic area, exposure to DEHP alone or in a phthalate mixture reduced ERα-immunoreactive cell number. Dendritic spine density assessed for DEHP at 5 μg/kg/d was also reduced. Thus, exposure to DEHP alone or in a phthalate mixture altered maternal behavior probably through a neuroendocrine mode of action involving oxytocin and estrogen through ERα, key pathways necessary for neuroplasticity and behavioral processing.
Collapse
Affiliation(s)
- Nolwenn Adam
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Marie-Amélie Lachayze
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|