1
|
Li Y, Li L, Zhang Y, Yun Q, Du R, Ye H, Li Z, Gao Q. Lipocalin-2 silencing alleviates sepsis-induced liver injury through inhibition of ferroptosis. Ann Hepatol 2024; 30:101756. [PMID: 39662594 DOI: 10.1016/j.aohep.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION AND OBJECTIVES Liver plays a key role in sepsis, a systemic inflammatory response syndrome caused by infection. Ferroptosis is involved in sepsis-induced liver injury. We aimed to assess the changes in ferroptosis in cecal ligation and puncture (CLP)-induced septic mice, and determine the role of lipocalin-2 (LCN2) in liver ferroptosis. MATERIALS AND METHODS CLP was used to induce sepsis in mice. The morphological changes in liver tissues and mitochondrial structure were observed using hematoxylin and eosin staining and transmission electron microscopy. The levels of serum alanine transaminase, aspartate aminotransferase, superoxide dismutase, and malondialdehyde were detected using the corresponding kits. The changes of reactive oxygen species level in liver tissues were detected using dihydroethidium as a fluorescence probe. LCN2, cysteine-glutamate reverse transport system, and dihydroorotate dehydrogenase protein levels in the liver were detected by western blotting. The ferroptosis inhibitor ferrostatin-1 (Fer-1), iron chelator dexrazoxane (DXZ), iron-dextran, and LCN2 knockdown studies were performed to determine role of ferroptosis and LCN2 in liver injury during sepsis. RESULTS Ferroptosis levels increased in the liver tissues of CLP-induced septic mice. Both Fer-1 and DXZ suppressed ferroptosis and attenuated liver injury following sepsis challenge, whereas iron-dextran increased ferroptosis and liver injury in mice with sepsis. LCN2 knockdown suppressed ferroptosis and reduced oxidative stress in the liver. CONCLUSIONS Ferroptosis inhibition attenuates septic liver injury. LCN2 knockdown alleviates sepsis-induced liver injury by inhibiting ferroptosis and reducing oxidative stress.
Collapse
Affiliation(s)
- Yuping Li
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Anhui Nerve Regeneration Technology and Medical new Materials Engineering Research Center, Bengbu, Anhui 233000, PR China.
| | - Lu Li
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| | - Yuming Zhang
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| | - Qi Yun
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| | - Ruoli Du
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| | - Hongwei Ye
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| | - Zhenghong Li
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Anhui Nerve Regeneration Technology and Medical new Materials Engineering Research Center, Bengbu, Anhui 233000, PR China.
| | - Qin Gao
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| |
Collapse
|
2
|
Li Y, Yan J, Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones 2024; 29:666-680. [PMID: 39343295 PMCID: PMC11490929 DOI: 10.1016/j.cstres.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Doxorubicin (DOX) is the most commonly used anthracycline anticancer agent, while its clinical utility is limited by harmful side effects like cardiotoxicity. Numerous studies have elucidated that programmed cell death plays a significant role in DOX-induced cardiotoxicity (DIC). This review summarizes several kinds of programmed cell death, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, oxidative stress, inflammation, and mitochondrial dysfunction are also important factors in the molecular mechanisms of DIC. Besides, a comprehensive understanding of specific signal pathways of DIC can be helpful to its treatment. Therefore, the related signal pathways are elucidated in this review, including sirtuin deacetylase (silent information regulator 2 [Sir2]) 1 (SIRT1)/nuclear factor erythroid 2-related factor 2, SIRT1/Klotho, SIRT1/Recombinant Sestrin 2, adenosine monophosphate-activated protein kinase, AKT, and peroxisome proliferator-activated receptor. Heat shock proteins function as chaperones, which play an important role in various stressful situations, especially in the heart. Thus, some of heat shock proteins involved in DIC are also included. Hence, the last part of this review focuses on the therapeutic research based on the mechanisms above.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of Second Clinical Medical College, Southern Medical University, Guangzhou, China.
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Abohashem RS, Ahmed HH, Sayed AH, Effat H. Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats. Cell Biochem Biophys 2024; 82:1353-1366. [PMID: 38743136 DOI: 10.1007/s12013-024-01289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1β; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1β and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.
Collapse
Affiliation(s)
- Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Alaa H Sayed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Xu L, Shi M. Lipocalin 2 (LCN2) Knockdown Regulates Treg/Th17 Balance to Improve Asthma in Mice. J Asthma Allergy 2023; 16:1323-1332. [PMID: 38111539 PMCID: PMC10726955 DOI: 10.2147/jaa.s418596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Asthma substantially affects the quality of life and health of children. Lipocalin 2 (LCN2) is an immune-related protein, which is predicted to be highly expressed in asthma. Here, we investigated the role of LCN2 in ovalbumin (OVA)-induced asthma mouse model. Methods We knocked down LCN2 in an asthma mouse model and performed histopathological analysis using hematoxylin and eosin (H&E) staining assay. Differentiated cells were assessed using Diff-Quick staining assay. We investigated the regulatory T (Treg) cell/ T helper 17 (Th17) cell balance using flow cytometry and enzyme-linked immunosorbent assay (ELISA). Inflammatory factors were measured using quantitative real-time reverse transcription PCR (qRT-PCR). The involved pathways were assessed using Western blotting. Results LCN2 was upregulated in patients with asthma. OVA promoted pathological deterioration in the lungs, increased IgE levels in the plasma, and elevated the number of differentiated inflammatory cells, whereas LCN2 knockdown abrogated the OVA-induced effects. Additionally, the Treg/Th17 imbalance and increased inflammatory cytokine levels were improved by LCN2 knockdown in OVA-treated mice. Moreover, LCN2 knockdown reversed the activation of the janus kinase (JNK) pathway. Conclusion LCN2 knockdown improved the Treg/Th17 balance, alleviated inflammation, and inactivated the JNK pathway in OVA-induced asthma mouse model, suggesting that LCN2 may be a novel therapeutic target for asthma in children.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, Liyang People’s Hospital, Liyang, JiangSu, 213300, People’s Republic of China
| | - Minkang Shi
- Department of Pediatrics, Liyang People’s Hospital, Liyang, JiangSu, 213300, People’s Republic of China
| |
Collapse
|
5
|
Bielawska M, Warszyńska M, Stefańska M, Błyszczuk P. Autophagy in Heart Failure: Insights into Mechanisms and Therapeutic Implications. J Cardiovasc Dev Dis 2023; 10:352. [PMID: 37623365 PMCID: PMC10456056 DOI: 10.3390/jcdd10080352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Autophagy, a dynamic and complex process responsible for the clearance of damaged cellular components, plays a crucial role in maintaining myocardial homeostasis. In the context of heart failure, autophagy has been recognized as a response mechanism aimed at counteracting pathogenic processes and promoting cellular health. Its relevance has been underscored not only in various animal models, but also in the human heart. Extensive research efforts have been dedicated to understanding the significance of autophagy and unravelling its complex molecular mechanisms. This review aims to consolidate the current knowledge of the involvement of autophagy during the progression of heart failure. Specifically, we provide a comprehensive overview of published data on the impact of autophagy deregulation achieved by genetic modifications or by pharmacological interventions in ischemic and non-ischemic models of heart failure. Furthermore, we delve into the intricate molecular mechanisms through which autophagy regulates crucial cellular processes within the three predominant cell populations of the heart: cardiomyocytes, cardiac fibroblasts, and endothelial cells. Finally, we emphasize the need for future research to unravel the therapeutic potential associated with targeting autophagy in the management of heart failure.
Collapse
Affiliation(s)
- Magdalena Bielawska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Marta Warszyńska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Monika Stefańska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
- Department of Rheumatology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| |
Collapse
|
6
|
Liu W, Guo X, Jin L, Hong T, Zhang Q, Su F, Shen Y, Li S, He B. Lipocalin-2 participates in sepsis-induced myocardial injury by mediating lipid accumulation and mitochondrial dysfunction. Front Cardiovasc Med 2022; 9:1009726. [PMID: 36419491 PMCID: PMC9676239 DOI: 10.3389/fcvm.2022.1009726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is one major cause of death for sepsis but lacks timely diagnosis and specific treatment due to unclear mechanisms. Lipocalin-2 (LCN-2) is a key regulator of lipid metabolism which has been recently proved closely related to sepsis, however, the relationship between LCN-2 and septic myocardial injury remains unknown. We aim to explore the role of LCN-2 in the pathological progress of SIC based on clinical and laboratory evidence. METHODS Consecutive patients admitted to the intensive care unit (ICU) from August 2021 to April 2022 fulfilling the criteria of severe sepsis were included. The level of LCN-2 in plasma was assayed and analyzed with clinical characteristics. Biostatistical analysis was performed for further identification and pathway enrichment. Mouse model for SIC was thereafter established, in which plasma and tissue LCN-2 levels were tested. RNA sequencing was used for verification and to reveal the possible mechanism. Mitochondrial function and intracellular lipid levels were assayed to further assess the biological effects of targeting LCN-2 in cardiomyocytes with small interference RNAs (siRNAs). RESULTS The level of LCN-2 in plasma was markedly higher in patients with severe sepsis and was associated with higher cardiac biomarkers and lower LVEF. In the in vivo experiment, circulating LCN-2 from plasma was found to increase in SIC mice. A higher level of LCN-2 transcription in myocardial tissue was also found in SIC and showed a clear time relationship. RNA sequencing analysis showed the level of LCN-2 was associated with several gene-sets relevant to mitochondrial function and lipid metabolism-associated pathways. The suppression of LCN-2 protected mitochondrial morphology and limited the production of ROS, as well as restored the mitochondrial membrane potential damaged by LPS. Neutral lipid staining showed prominent lipid accumulation in LPS group, which was alleviated by the treatment of siLCN2. CONCLUSION The level of LCN-2 is significantly increased in SIC at both circulating and tissue levels, which is correlated with the severity of myocardial injury indicators, and may work as an early and great predictor of SIC. LCN-2 probably participates in the process of septic myocardial injury through mediating lipid accumulation and affecting mitochondrial function.
Collapse
Affiliation(s)
- Weizhuo Liu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jin
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Hong
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Zhang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Su
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shen
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saiqi Li
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Calcium Overload or Underload? The Effects of Doxorubicin on the Calcium Dynamics in Guinea Pig Hearts. Biomedicines 2022; 10:biomedicines10092197. [PMID: 36140298 PMCID: PMC9496179 DOI: 10.3390/biomedicines10092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The severe doxorubicin (DOXO) side effect of cardiomyopathy limits it clinical application as an effective anticancer drug. Although Ca2+ overload was postulated as one of the mechanisms for this toxicity, its role was, however, disputable in terms of the contractile dysfunction. In this work, the dynamics of the intracellular Ca2+ signal were optically mapped in a Langendorff guinea pig heart. We found that DOXO treatment: (1) Delayed the activation of the Ca2+ signal. With the reference time set at the peak of the action potential (AP), the time lag between the peak of the Ca2+ signal and AP (Ca-AP-Lag) was significantly prolonged. (2) Slowed down the intracellular Ca2+ releasing and sequestering process. Both the maximum rising (MRV) and falling (MFV) velocity of the Ca2+ signal were decreased. (3) Shortened the duration of the Ca2+ signal in one cycle of Ca2+ oscillation. The duration of the Ca2+ signal at 50% amplitude (CaD50) was significantly shortened. These results suggested a reduced level of intracellular Ca2+ after DOXO treatment. Furthermore, we found that the effect of tachypacing was similar to that of DOXO, and, interestingly, DOXO exerted contradictory effects on the tachypaced hearts: it shortened the Ca-AP-Lag, accelerated the MRV and MFV, and prolonged the CaD50. We, therefore, concluded that DOXO had a different effect on intracellular Ca2+. It caused Ca2+ underload in hearts with sinus rhythm; this might relate to the contractile dysfunction in DOXO cardiomyopathy. It led to Ca2+ overload in the tachypaced hearts, which might contribute to the Ca2+-overload-related toxicity.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) excess is associated with left ventricular hypertrophy (LVH) and early mortality in patients with chronic kidney disease (CKD) and in animal models. Elevated Lipocalin-2 (LCN2), produced by the injured kidneys, contributes to CKD progression and might aggravate cardiovascular outcomes. The current review aims to highlight the role of LCN2 in CKD, particularly its interactions with FGF23. RECENT FINDINGS Inflammation, disordered iron homeostasis and altered metabolic activity are common complications of CKD, and are associated with elevated levels of kidney-produced LCN2 and bone-secreted FGF23. A recent study shows that elevated LCN2 increases FGF23 production, and contributes to cardiac injury in patients and animals with CKD, whereas LCN2 reduction in mice with CKD reduces FGF23, improves cardiovascular outcomes and prolongs lifespan. SUMMARY In this manuscript, we discuss the potential pathophysiological functions of LCN2 as a major kidney-bone crosstalk molecule, linking the progressive decline in kidney function to excessive bone FGF23 production. We also review associations of LCN2 with kidney, cardiovascular and bone and mineral alterations. We conclude that the presented data support the design of novel therapeutic approaches to improve outcomes in CKD.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
黄 毓, 张 共, 梁 欢, 曹 珍, 叶 红, 高 琴. [Inhibiting ferroptosis attenuates myocardial injury in septic mice: the role of lipocalin-2]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:256-262. [PMID: 35365451 PMCID: PMC8983367 DOI: 10.12122/j.issn.1673-4254.2022.02.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To explore the contribution of ferroptosis to myocardial injury in mouse models of sepsis and the role lipocalin-2 (Lcn2) in ferroptosis. METHODS Adult male C57BL/6 mice were randomized equally into sham-operated group, cecal ligation and puncture (CLP)-induced sepsis group, and CLP + Fer-1 group where the mice received intraperitoneal injection of 5 mg/mL Fer-1 (5 mg/kg) 1 h before CLP. The left ventricular functions (including LVEF%, LVFS%, LVIDd and LVIDs) of the mice were assessed by echocardiography at 24 h after CLP. Myocardial injury in the mice was observed with HE staining, and the changes of myocardial ultrastructure and mitochondria were observed using transmission electron microscopy (TEM). Serum TNF-α level was measured with ELISA, and the changes of myocardial iron content were detected using tissue iron kit. The protein expressions of myocardial Lcn2, glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) were determined with Western blotting. RESULTS The septic mice showed significantly decreased LVEF%, LVFS% and LVIDd and increased LVIDs at 24 h after CLP (P < 0.05), and these changes were significantly improved by Fer-1 treatment. Sepsis caused obvious myocardial pathologies and changes in myocardial ultrastructure and mitochondria, which were significantly improved by Fer-1 treatment. Fer-1 treatment also significantly ameliorated sepsis-induced elevations of serum TNF-α level, myocardial tissue iron content, and Lcn2 protein expression and the reduction of GPX4 and FSP1 protein expression levels (P < 0.05). CONCLUSION GPX4- and FSP1-mediated ferroptosis are involved in myocardial injury in mice with CLP-induced sepsis, and inhibition of ferroptosis can attenuate septic myocardial injury, in which Lcn2 may play a role.
Collapse
Affiliation(s)
- 毓慧 黄
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 共鹏 张
- 蚌埠医学院临床医学院,安徽 蚌埠 233000Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
| | - 欢 梁
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 珍珍 曹
- 蚌埠医学院第一附属医院呼吸与危重症医学科,安徽 蚌埠 233000Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 红伟 叶
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 琴 高
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|