1
|
Zhao Y, Li X, Yu W, Lin W, Wei W, Zhang L, Liu D, Ma H, Chen J. Differential expression of ADRB1 causes different responses to norepinephrine in adipocytes of Duroc-Landrace-Yorkshire pigs and min pigs. J Therm Biol 2024; 123:103906. [PMID: 38970835 DOI: 10.1016/j.jtherbio.2024.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/11/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Research has shown that pigs from different regions exhibit varying responses to cold stimuli. Typically, cold stimuli induce browning of white adipose tissue mediated by adrenaline, promoting non-shivering thermogenesis. However, the molecular mechanisms underlying differential response of pig breeds to norepinephrine are unclear. The aim of this study was to investigate the differences and molecular mechanisms of the effects of norepinephrine (NE) treatment on adipocytes of Min pigs (a cold-resistant pig breed) and Duroc-Landrace-Yorkshire (DLY) pigs. Real time-qPCR, western blot, and immunofluorescence were performed following NE treatment on cell cultures of adipocytes originating from Min pigs (n = 3) and DLY pigs (n = 3) to assess the expressions of adipogenesis markers, beige fat markers, and mitochondrial biogenesis markers. The results showed that NE did not affect browning of adipocytes in DLY pigs, whereas promoted browning of adipocytes in Min pigs. Further, the expression of ADRB1 (Adrenoceptor Beta 1, ADRB1) was higher in subcutaneous adipose tissue and adipocytes of Min pigs than those of DLY pigs. Overexpression of ADRB1 in DLY pig adipocytes enhanced sensitivity to NE, exhibiting decreased adipogenesis markers, upregulated beige fat markers, and increased mitochondrial biogenesis. Conversely, adipocytes treated with ADRB1 antagonist in Min pigs resulted in decreased cellular sensitivity to NE. Further studies revealed differential CpG island methylation in ADRB1 promoter region, with lower methylation levels in Min pigs compared to DLY pigs. In conclusion, differential methylation of the ADRB1 promoter region leads to different ADRB1 expression, resulting in varying responsiveness to NE in adipocytes of two pig breeds. Our results provide new insights for further analysis of the differential cold responsiveness in pig breeds from different regions.
Collapse
Affiliation(s)
- Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuexin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbi, 150086, China
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbi, 150086, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Li X, Liu Q, Fu C, Li M, Li C, Li X, Zhao S, Zheng Z. Characterizing structural variants based on graph-genotyping provides insights into pig domestication and local adaption. J Genet Genomics 2024; 51:394-406. [PMID: 38056526 DOI: 10.1016/j.jgg.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Structural variants (SVs), such as deletions (DELs) and insertions (INSs), contribute substantially to pig genetic diversity and phenotypic variation. Using a library of SVs discovered from long-read primary assemblies and short-read sequenced genomes, we map pig genomic SVs with a graph-based method for re-genotyping SVs in 402 genomes. Our results demonstrate that those SVs harboring specific trait-associated genes may greatly shape pig domestication and local adaptation. Further characterization of SVs reveals that some population-stratified SVs may alter the transcription of genes by affecting regulatory elements. We identify that the genotypes of two DELs (296-bp DEL, chr7: 52,172,101-52,172,397; 278-bp DEL, chr18: 23,840,143-23,840,421) located in muscle-specific enhancers are associated with the expression of target genes related to meat quality (FSD2) and muscle fiber hypertrophy (LMOD2 and WASL) in pigs. Our results highlight the role of SVs in domestic porcine evolution, and the identified candidate functional genes and SVs are valuable resources for future genomic research and breeding programs in pigs.
Collapse
Affiliation(s)
- Xin Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Quan Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chong Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengxun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changchun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, Hubei 448000, China.
| |
Collapse
|
3
|
Wikan N, Tocharus J, Oka C, Sivasinprasasn S, Chaichompoo W, Denlumpai P, Suksamrarn A, Tocharus C. Pelargonic acid vanillylamide alleviates hepatic autophagy and ER stress in hepatic steatosis model. Food Chem Toxicol 2023; 180:113987. [PMID: 37611858 DOI: 10.1016/j.fct.2023.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Pelargonic acid vanillylamide (PAVA) has been shown to reduce hepatic lipid accumulation in an obese rat model, however the underlying mechanism responsible for regulating lipid metabolism remains unclear. This study investigated the molecular mechanisms invoked by PAVA in regulating lipogenesis, autophagy, and endoplasmic reticulum (ER) stress in obese rats. Male Sprague-Dawley rats were fed on a diet consisting of 65.26% fat (16 weeks) and HepG2 cells were incubated with 200 μM oleic acid (OA) plus 100 μM palmitic acid (PA) for 48 h. These treatments resulted in a steatosis model. PAVA was shown to reduce fat deposition in hepatocytes in HepG2 by reducing lipotoxicity, the triglyceride content, the expression of sterol regulatory element binding protein 1c (SREBP-1c) and fatty acid synthase (FASN). PAVA also significantly reduced the calcium level and the expression of calpain 2 and upregulated the expression of Atg7 in comparison to the HFD group. In addition, PAVA was shown to significantly decrease the expression of autophagy pathway-related proteins including LC3 and p62. Treatment with PAVA (1 mg/day) reduced the expressions of ER stress markers Bip, ATF6 (p50), p-IRE1/IRE1, p-eIF2α/eIF2α, pJNK, CHOP and cleaved CASP12. In conclusion, PAVA ameliorated obesity induced hepatic steatosis by attenuating defective autophagy and ER stress pathways.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chio Oka
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Panida Denlumpai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|