1
|
Zhou J, Zhu Z, Zhang X, Peng W, He Y, Zhang Q. CircWDR37 promotes hepatocellular carcinoma tumorigenesis by mediating the miR-646/TRAF4 regulatory pathway. Pathol Res Pract 2024; 263:155658. [PMID: 39427585 DOI: 10.1016/j.prp.2024.155658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND CircRNA has emerged as a significant player in human malignancies, including hepatocellular carcinoma (HCC). Hsa_circ_0004277 (circWDR37) is abnormally up-regulated in HCC. But, its function and underlying mechanism in HCC progression are largely unknown. METHODS qRT-PCR and western blot assays were used to measure the expression of circWDR37, miR-646, and TRAF4. Cell malignant phenotypes were assessed via CCK-8, EdU, colony formation, flow cytometry, transwell, and tube formation experiments. The intermolecular interaction between miR-646 and circWDR37 or TRAF4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. The in vivo effect of circWDR37 on xenograft tumor growth was also investigated in mice. RESULTS Increased CircWDR37 and TRAF4 and decreased miR-646 were found in HCC tissues and cells. Scilencing circWDR37 impeded cell proliferation, migration, invasion, and tube formation, while accelerated apoptosis. CircWDR37 directly bind to miR-646 to suppress miR-646 expression and up-regulate TRAF4 expression. MiR-646 inhibitor partially abated the cell phenotype changes caused by circWDR37 knockdown. Moreover, miR-646 exerted an inhibitory effect on cell malignant phenotypes, which were attenuated due to the increase of TRAF4. Additionally, circWDR37 knockdown blocked HCC tumor growth in vivo. CONCLUSION CircWDR37 exerted an oncogenic effect in HCC by sponging miR-646 to up-regulate TRAF4 expression. Our finding elucidates a novel 'circWDR37-miR-646-TRAF4' regulatory axis in HCC and provides a promising target for HCC treatment.
Collapse
Affiliation(s)
- Jie Zhou
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Zhu Zhu
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children & Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Xi Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Wenli Peng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China.
| | - Qing Zhang
- Department of Infectious Disease, Guizhou Provincal People's Hospital, Guiyang, Guizhou 550499, China.
| |
Collapse
|
2
|
Yao B, Hu W, Chen Y, Li J, Jiang K, Dou J. Pan-cancer analysis of the TRAF family genes and their correlation with prognosis, TME, immune and drug sensitivity. Eur J Med Res 2024; 29:307. [PMID: 38825674 PMCID: PMC11145793 DOI: 10.1186/s40001-024-01875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Tumor necrosis factor receptor-associated factors family genes play a pivotal role in tumorigenesis and metastasis, functioning as adapters or E3 ubiquitin ligases across various signaling pathways. To date, limited research has explored the association between tumor necrosis factor receptor-associated factors family genes and the clinicopathological characteristics of tumors, immunity, and the tumor microenvironment (TME). This comprehensive study investigates the relationship between tumor necrosis factor receptor-associated factors family and prognosis, TME, immune response, and drug sensitivity in a pan-cancer context. METHODS Utilizing current public databases, this study examines the expression levels and prognostic significance of tumor necrosis factor receptor-associated factors family genes in a pan-cancer context through bioinformatic analysis. In addition, it investigates the correlation between tumor necrosis factor receptor-associated factors expression and various factors, including the TME, immune subtypes, stemness scores, and drug sensitivity in pan-cancer. RESULTS Elevated expression levels of tumor necrosis factor receptor-associated factor 2, 3, 4, and 7 were observed across various cancer types. Patients exhibiting high expression of these genes generally faced a worse prognosis. Furthermore, a significant correlation was noted between the expression of tumor necrosis factor receptor-associated factors family genes and multiple dimensions of the TME, immune subtypes, and drug sensitivity.
Collapse
Affiliation(s)
- Bin Yao
- Changshu NO.2 People's Hospital, Changshu, China
| | - Weikang Hu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Chen
- Huai'an Hospital Affiliated to Yangzhou University, Huai'an, China
| | - Jing Li
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jin Dou
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
- Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Zhang X, Wang X, Chen J, Chen M, Lu X, Ning J, Liu H, Liu G, Xu X, Qu X, Yu K, Xu H, Wang C, Liu B. Functional analyses of TRAF6 gene in Argopecten scallops. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109443. [PMID: 38354964 DOI: 10.1016/j.fsi.2024.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family has been reported to be involved in many immune pathways. In a previous study, we identified 5 TRAF genes, including TRAF2, 3, 4, 6, and 7, in the bay scallop (Argopecten irradians, Air) and the Peruvian scallop (Argopecten purpuratus, Apu). Since TRAF6 is a key molecular link in the TNF superfamily, we conducted a series of studies targeting the TRAF6 gene in the Air and Apu scallops as well as their hybrid progeny, Aip (Air ♀ × Apu ♂) and Api (Apu ♀ × Air ♂). Subcellular localization assay showed that the Air-, Aip-, and Api-TRAF6 were widely distributed in the cytoplasm of the human embryonic kidney cell line (HEK293T). Additionally, dual-luciferase reporter assay revealed that among TRAF3, TRAF4, and TRAF6, only the overexpression of TRAF6 significantly activated NF-κB activity in the HEK293T cells in a dose-dependent manner. These results suggest a crucial role of TRAF6 in the immune response in Argopecten scallops. To investigate the specific immune mechanism of TRAF6 in Argopecten scallops, we conducted TRAF6 knockdown using RNA interference. Transcriptomic analyses of the TRAF6 RNAi and control groups identified 1194, 2403, and 1099 differentially expressed genes (DEGs) in the Air, Aip, and Api scallops, respectively. KEGG enrichment analyses revealed that these DEGs were primarily enriched in transport and catabolism, amino acid metabolism, peroxisome, lysosome, and phagosome pathways. Expression profiles of 28 key DEGs were confirmed by qRT-PCR assays. The results of this study may provide insights into the immune mechanisms of TRAF in Argopecten scallops and ultimately benefit scallop breeding.
Collapse
Affiliation(s)
- Xiaotong Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xia Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Jieyu Chen
- Qingdao No. 9 High School, Qingdao, Shandong, 266426, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Haijun Liu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Xiaoxu Qu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Kai Yu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - He Xu
- Jiangsu Baoyuan Biotechnology Co., Ltd., Lianyungang, 222144, China; Jiangsu Haitai MariTech Co., Ltd., Lianyungang, 222144, China
| | - Chunde Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| | - Bo Liu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
4
|
Wang H, Shan X, Peng Y, Zhou W. Circular RNAs in the chemoresistance of triple-negative breast cancer: A systematic review. Drug Dev Res 2023; 84:805-814. [PMID: 37114737 DOI: 10.1002/ddr.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
This study aims to assess studies on circular RNAs (circRNAs) in the chemoresistance of triple-negative breast cancer (TNBC) and provide relevant references for the development of new TNBC chemotherapy sensitivity biomarkers and therapeutic targets. The PubMed, Embase, Web of Knowledge, Cochrane Library, and four Chinese databases were searched up to January 27, 2023, and studies related to TNBC chemoresistance were included. The basic characteristics of the studies and the mechanisms of circRNAs in regulating TNBC chemoresistance were analyzed. A total of 28 studies published between 2018 and 2023 were included, and the chemotherapeutics included adriamycin, paclitaxel, docetaxel, 5-fluorouracil, lapatinib, and so forth. A total of 30 circRNAs were identified, 86.67% (n = 26) of these circRNAs were reported to act as microRNA (miRNA) sponges to regulate chemotherapy sensitivity, while only two circRNAs (circRNA-MTO1 and circRNA-CREIT) interacted with proteins. A total of 14, 12, and 2 circRNAs were reported to be associated with chemoresistance to adriamycin, taxanes, and 5-fluorouracil, respectively. Six circRNAs were found to act as miRNA sponges that promote chemotherapy resistance by regulating the PI3K/Akt signalling pathway. CircRNAs participate in the regulation of TNBC chemoresistance and can be used as biomarkers and therapeutic targets for improving chemotherapy sensitivity. However, further studies are needed to confirm the role of circRNAs in TNBC chemoresistance.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefeng Shan
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|