1
|
Li Y, Chen Z, Guo J, Meng D, Pang X, Sun Z, Pu L, Yang S, Yang M, Peng Y. Enhanced brain-targeting and efficacy of cannabidiol via RVG-Exo/CBD nanodelivery system. Biochem Biophys Res Commun 2024; 725:150260. [PMID: 38878760 DOI: 10.1016/j.bbrc.2024.150260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
This study introduces an innovative brain-targeted drug delivery system, RVG-Exo/CBD, utilizing rabies virus glycoprotein (RVG)-engineered exosomes for encapsulating cannabidiol (CBD). The novel delivery system was meticulously characterized, confirming the maintenance of exosomal integrity, size, and successful drug encapsulation with a high drug loading rate of 83.0 %. Evaluation of the RVG-Exo/CBD's brain-targeting capability demonstrated superior distribution and retention in brain tissue compared to unmodified exosomes, primarily validated through in vivo fluorescence imaging. The efficacy of this delivery system was assessed using a behavioral sensitization model in mice, where RVG-Exo/CBD notably suppressed methamphetamine-induced hyperactivity more effectively than CBD alone, indicating a reduction in effective dose and enhanced bioavailability. Overall, the RVG-Exo/CBD system emerges as a promising strategy for enhancing the therapeutic efficacy and safety of CBD, particularly for neurological applications, highlighting its potential for addressing the limitations associated with traditional CBD administration in clinical settings.
Collapse
Affiliation(s)
- Yingrui Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Ze Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Deshuang Meng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Xin Pang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Li Pu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Shuiyue Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China.
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China.
| |
Collapse
|
2
|
Liu L, Liu M, Song Z, Zhang H. Silencing of FTO inhibits oxidative stress to relieve neuropathic pain by m6A modification of GPR177. Immun Inflamm Dis 2024; 12:e1345. [PMID: 39023405 PMCID: PMC11256881 DOI: 10.1002/iid3.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a challenging health condition owing to its complex nature and associated multiple etiologies. The occurrence of NP involves the abnormal activity of neurons mediated by oxidative stress (OS). Previous research has demonstrated that m6A methylation plays a role in the regulatory pathway of NP. This study aimed to investigate the specific molecular pathways through which m6A methylation modifiers alleviate NP. METHODS For this purpose, an NO rat model was developed via spared nerve injury (SNI), followed by quantifying the animal's pain assessment via paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The OS in SNI rats was evaluated by measuring reactive oxygen species, superoxide dismutase, and catalase (CAT) in spinal cord tissues. Moreover, quantitative-real-time polymerase chain reaction and western blot analysis were employed for detecting fat mass and obesity-associated (FTO) and GPR177 levels, while m6A levels of GPR117 were analyzed via MeRIP. RESULTS The results indicated an enhanced OS with highly expressed FTO in spinal cord tissue samples, where knocking down Fto effectively relieved NP and OS in SNI rats. Mechanistic investigations revealed that Fto-mediated reduction of Grp177 m6A modification was involved in the WNT5a/TRPV1 axis-mediated OS remission of NP. Moreover, in vitro experiment results indicated that YTHDF2 was an important m6A methylated reading protein for this process. CONCLUSIONS Fto silencing leads to increased m6A methylation of Grp177 through a YTHDF2-dependent mechanism, resulting in decreased Grp177 stability and ultimately reducing NP in rats by OS suppression.
Collapse
Affiliation(s)
- Li Liu
- Department of OncologyJiangxi Provincial People's HospitalNanchangChina
| | - Mei Liu
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhiping Song
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huaigen Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
3
|
Arantes ALF, Carvalho MC, Brandão ML, Prado WA, Crippa JADS, Lovick TA, Genaro K. Antinociceptive action of cannabidiol on thermal sensitivity and post-operative pain in male and female rats. Behav Brain Res 2024; 459:114793. [PMID: 38048909 DOI: 10.1016/j.bbr.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
This study investigated the antinociceptive potential of cannabidiol (CBD) in male and female Wistar rats. The assessment and analysis included tail withdrawal to thermal stimulation (tail flick test) and mechanical allodynia induced by plantar incision injury (von Frey test). CBD reduced acute thermal sensitivity in uninjured animals and post-operative mechanical allodynia in males and females. In the tail flick test, CBD 30 mg/kg i.p. was required to induce antinociception in males. During the proestrus phase, females did not show a statistically significant antinociceptive response to CBD treatment despite a noticeable trend. In contrast, in a separate group of rats tested during the late diestrus phase, antinociception varied with CBD dosage and time. In the post-operative pain model, CBD at 3 mg/kg decreased mechanical allodynia in males. Similarly, this dose reduced allodynia in females during proestrus. However, in females during late diestrus, the lower dose of CBD (0.3 mg/kg) reduced mechanical allodynia, although the latency to onset of the effect was slower (90 min). The effectiveness of a 10-fold lower dose of CBD during the late diestrus stage in females suggests that ovarian hormones can influence the action of CBD. While CBD has potential for alleviating pain in humans, personalized dosing regimens may need to be developed to treat pain in women.
Collapse
Affiliation(s)
- Ana Luisa Ferreira Arantes
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Milene Cristina Carvalho
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil; Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Marcus Lira Brandão
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Wiliam Alves Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil; National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (INCT-TM, CNPq), Brasília, DF 71605-001, Brazil
| | - Thelma Anderson Lovick
- Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Karina Genaro
- Department of Anesthesiology, School of Medicine, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
4
|
Benamar K. IUPHAR review- Preclinical models of neuropathic pain: Evaluating multifunctional properties of natural cannabinoid receptors ligands. Pharmacol Res 2024; 199:107013. [PMID: 38008135 DOI: 10.1016/j.phrs.2023.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Neuropathic pain remains prevalent and challenging to manage and is often comorbid with depression and anxiety. The new approach that simultaneously targets neuropathic pain and the associated comorbidities, such as depression and anxiety, is timely and critical, given the high prevalence and severity of neuropathic pain and the lack of effective analgesics. In this review, we focus on the animal models of neuropathic pain that researchers have used to investigate the analgesic effects of cannabidiol (CBD) and Beta-Caryophyllene (BCP) individually and in combination while addressing the impact of these compounds on the major comorbidity (e.g., depression, anxiety) associated with neuropathic pain. We also addressed the potential targets/mechanisms by which CBD and BCP produce analgesic effects in neuropathic pain models. The preclinical studies examined in this review support CBD and BCP individually and combined as potential alternative analgesics for neuropathic pain while showing beneficial effects on depression and anxiety.
Collapse
Affiliation(s)
- Khalid Benamar
- Institute of Neuroscience and Department of Neuro-behavioral Health, University of Texas Rio Grande Valley, School of Medicine, Biomedical building, McAllen, TX 78504, USA.
| |
Collapse
|
5
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|