1
|
Zheng Y, Zhang Y, Wu L, Riaz H, Li Z, Shi D, Rehman SU, Liu Q, Cui K. Generation of Heritable Prominent Double Muscle Buttock Rabbits via Novel Site Editing of Myostatin Gene Using CRISPR/Cas9 System. Front Vet Sci 2022; 9:842074. [PMID: 35669173 PMCID: PMC9165342 DOI: 10.3389/fvets.2022.842074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Rabbits have been domesticated for meat, wool, and fur production, and have also been cherished as a companion, artistic inspiration, and an experimental model to study many human diseases. In the present study, the muscle mass negative regulator gene myostatin (MSTN) was knocked out in rabbits at two novel sites in exon3, and the function of these mutations was determined in subsequent generations. The prominent double muscle phenotype with hyperplasia or hypertrophy of muscle fiber was observed in the MSTN-KO rabbits, and a similar phenotype was confirmed in the F1 generation. Moreover, the average weight of 80-day-old MSTN-KO rabbits (2,452 ± 63 g) was higher than that of wild-type rabbits (2,393.2 ± 106.88 g), and also the bodyweight of MSTN-KO rabbits (3,708 ± 43.06g) was significantly higher (P < 0.001) at the age of 180 days than wild-type (WT) rabbits (3,224 ± 48.64g). In MSTN-KO rabbits, fourteen rabbit pups from the F1 generation and thirteen from the F2 generation stably inherited the induced MSTN gene mutations. Totally, 194 pups were produced in the F1 generation of which 49 were MSTN-KO rabbits, while 47 pups were produced in the F2 generation of which 20 were edited rabbits, and the ratio of edited to wild-type rabbits in the F2 generation was approximately 1:1. Thus, we successfully generated a heritable double muscle buttocks rabbits via myostatin mutation with CRISPR/Cas9 system, which could be valuable in rabbit's meat production and also a useful animal model to study the development of muscles among livestock species and improve their important economic traits as well as the human muscle development-related diseases.
Collapse
Affiliation(s)
- Yalin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Yu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Liyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hasan Riaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Jendryczko K, Chudzian J, Skinder N, Opaliński Ł, Rzeszótko J, Wiedlocha A, Otlewski J, Szlachcic A. FGF2-Derived PeptibodyF2-MMAE Conjugate for Targeted Delivery of Cytotoxic Drugs into Cancer Cells Overexpressing FGFR1. Cancers (Basel) 2020; 12:E2992. [PMID: 33076489 PMCID: PMC7602595 DOI: 10.3390/cancers12102992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are emerging targets for directed cancer therapy. Presented here is a new FGFR1-targeting conjugate, the peptibodyF2, which employs peptibody, a fusion of peptide and the Fc fragment of human IgG as a selective targeting agent and drug carrier. Short peptide based on FGF2 sequence was used to construct a FGFR1-targeting peptibody. We have shown that this peptide ensures specific delivery of peptibodyF2 into FGFR1-expressing cells. In order to use peptibodyF2 as a delivery vehicle for cytotoxic drugs, we have conjugated it with MMAE, a drug widely used in antibody-drug conjugates for targeted therapy. Resulting conjugate shows high and specific cytotoxicity towards FGFR1-positive cells, i.e., squamous cell lung carcinoma NCI-H520, while remaining non-toxic for FGFR1-negative cells. Such peptibody-drug conjugate can serve as a basis for development of therapy for tumors with overexpressed or malfunctioning FGFRs.
Collapse
Affiliation(s)
- Karolina Jendryczko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Julia Chudzian
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Natalia Skinder
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Jakub Rzeszótko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 01163 Warsaw, Poland
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Anna Szlachcic
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| |
Collapse
|
3
|
Ferreira D, Silva AP, Nobrega FL, Martins IM, Barbosa-Matos C, Granja S, Martins SF, Baltazar F, Rodrigues LR. Rational Identification of a Colorectal Cancer Targeting Peptide through Phage Display. Sci Rep 2019; 9:3958. [PMID: 30850705 PMCID: PMC6408488 DOI: 10.1038/s41598-019-40562-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is frequently diagnosed at an advanced stage due to the absence of early clinical indicators. Hence, the identification of new targeting molecules is crucial for an early detection and development of targeted therapies. This study aimed to identify and characterize novel peptides specific for the colorectal cancer cell line RKO using a phage-displayed peptide library. After four rounds of selection plus a negative step with normal colorectal cells, CCD-841-CoN, there was an obvious phage enrichment that specifically bound to RKO cells. Cell-based enzyme-linked immunosorbent assay (ELISA) was performed to assess the most specific peptides leading to the selection of the peptide sequence CPKSNNGVC. Through fluorescence microscopy and cytometry, the synthetic peptide RKOpep was shown to specifically bind to RKO cells, as well as to other human colorectal cancer cells including Caco-2, HCT 116 and HCT-15, but not to the normal non-cancer cells. Moreover, it was shown that RKOpep specifically targeted human colorectal cancer cell tissues. A bioinformatics analysis suggested that the RKOpep targets the monocarboxylate transporter 1, which has been implicated in colorectal cancer progression and prognosis, proven through gene knockdown approaches and shown by immunocytochemistry co-localization studies. The peptide herein identified can be a potential candidate for targeted therapies for colorectal cancer.
Collapse
Affiliation(s)
- Débora Ferreira
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal.,MIT-Portugal Program, Lisbon, Portugal
| | - Ana P Silva
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Franklin L Nobrega
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal.,Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Ivone M Martins
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra F Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Surgery Department, Coloproctology Unit, Braga Hospital, Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ligia R Rodrigues
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal. .,MIT-Portugal Program, Lisbon, Portugal.
| |
Collapse
|