1
|
Ishikawa K, Suzuki H, Ohishi T, Nakamura T, Yanaka M, Li G, Tanaka T, Ohkoshi A, Kawada M, Kaneko MK, Katori Y, Kato Y. Antitumor activities of anti‑CD44 monoclonal antibodies in mouse xenograft models of esophageal cancer. Oncol Rep 2024; 52:147. [PMID: 39219278 PMCID: PMC11391255 DOI: 10.3892/or.2024.8806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
CD44 is a type I transmembrane glycoprotein associated with poor prognosis in various solid tumors. Since CD44 plays a critical role in tumor development by regulating cell adhesion, survival, proliferation and stemness, it has been considered a target for tumor therapy. Anti‑CD44 monoclonal antibodies (mAbs) have been developed and applied to antibody‑drug conjugates and chimeric antigen receptor‑T cell therapy. Anti-pan‑CD44 mAbs, C44Mab‑5 and C44Mab‑46, which recognize both CD44 standard (CD44s) and variant isoforms were previously developed. The present study generated a mouse IgG2a version of the anti‑pan‑CD44 mAbs (5‑mG2a and C44Mab‑46‑mG2a) to evaluate the antitumor activities against CD44‑positive cells. Both 5‑mG2a and C44Mab‑46‑mG2a recognized CD44s‑overexpressed CHO‑K1 (CHO/CD44s) cells and esophageal tumor cell line (KYSE770) in flow cytometry. Furthermore, both 5‑mG2a and C44Mab‑46‑mG2a could activate effector cells in the presence of CHO/CD44s cells and exhibited complement-dependent cytotoxicity against both CHO/CD44s and KYSE770 cells. Furthermore, the administration of 5‑mG2a and C44Mab‑46‑mG2a significantly suppressed CHO/CD44s and KYSE770 xenograft tumor development compared with the control mouse IgG2a. These results indicate that 5‑mG2a and C44Mab‑46‑mG2a could exert antitumor activities against CD44‑positive cancers and be a promising therapeutic regimen for tumors.
Collapse
Affiliation(s)
- Kenichiro Ishikawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Akira Ohkoshi
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa‑ku, Tokyo 141‑0021, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Yukio Katori
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
2
|
Suzuki H, Tawara M, Hirayama A, Goto N, Tanaka T, Kaneko MK, Kato Y. Epitope Mapping of an Anti-CD44v4 Monoclonal Antibody (C 44Mab-108) Using Enzyme-Linked Immunosorbent Assay. Monoclon Antib Immunodiagn Immunother 2024; 43:85-89. [PMID: 38507669 DOI: 10.1089/mab.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CD44 is a type I transmembrane glycoprotein and possesses various isoforms which are largely classified into CD44 standard (CD44s) and CD44 variant (CD44v) isoforms. Some variant-encoded regions play critical roles in tumor progression. However, the function of CD44 variant 4 (CD44v4)-encoded region has not been fully understood. Using peptide immunization, we developed an anti-CD44v4 monoclonal antibody, C44Mab-108, which is useful for flow cytometry, western blotting, and immunohistochemistry. In this study, we determined the critical epitope of C44Mab-108 by enzyme-linked immunosorbent assay (ELISA). We used the alanine (or glycine)-substituted peptides of the CD44v4-encoded region (amino acids 271-290 of human CD44v3-10) and found that C44Mab-108 did not recognize the alanine-substituted peptides of D280A and W281A. Furthermore, these peptides could not inhibit the recognition of C44Mab-108 in flow cytometry and immunohistochemistry. The results indicate that the critical binding epitope of C44Mab-108 includes Asp280 and Trp281 of CD44v3-10.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuki Tawara
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aoi Hirayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Okada Y, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Epitope Mapping of an Anti-Mouse CD39 Monoclonal Antibody Using PA Scanning and RIEDL Scanning. Monoclon Antib Immunodiagn Immunother 2024; 43:44-52. [PMID: 38507671 DOI: 10.1089/mab.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
A cell-surface ectonucleotidase CD39 mediates the conversion of extracellular adenosine triphosphate into immunosuppressive adenosine with another ectonucleotidase CD73. The elevated adenosine in the tumor microenvironment attenuates antitumor immunity, which promotes tumor cell immunologic escape and progression. Anti-CD39 monoclonal antibodies (mAbs), which suppress the enzymatic activity, can be applied to antitumor therapy. Therefore, an understanding of the relationship between the inhibitory activity and epitope of mAbs is important. We previously established an anti-mouse CD39 (anti-mCD39) mAb, C39Mab-1 using the Cell-Based Immunization and Screening method. In this study, we determined the critical epitope of C39Mab-1 using flow cytometry. We performed the PA tag (12 amino acids [aa])-substituted analysis (named PA scanning) and RIEDL tag (5 aa)-substituted analysis (named RIEDL scanning) to determine the critical epitope of C39Mab-1 using flow cytometry. By the combination of PA scanning and RIEDL scanning, we identified the conformational epitope, spanning three segments of 275-279, 282-291, and 306-323 aa of mCD39. These analyses would contribute to the identification of the conformational epitope of membrane proteins.
Collapse
Affiliation(s)
- Yuki Okada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Ouchida T, Li G, Suzuki H, Yanaka M, Nakamura T, Handa S, Tanaka T, Kaneko MK, Kato Y. PMab-314: An Anti-Giant Panda Podoplanin Monoclonal Antibody. Monoclon Antib Immunodiagn Immunother 2024; 43:53-58. [PMID: 38593441 DOI: 10.1089/mab.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
The giant panda (Ailuropoda melanoleuca) is one of the important species in worldwide animal conservation. Because it is essential to understand the disease of giant panda for conservation, histopathological analyses of tissues are important to understand the pathogenesis. However, monoclonal antibodies (mAbs) against giant panda-derived proteins are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. PDPN is also overexpressed in various human tumors, which are associated with poor prognosis. Here, an anti-giant panda PDPN (gpPDPN) mAb, PMab-314 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening method. PMab-314 recognized N-terminal PA16-tagged gpPDPN-overexpressed Chinese hamster ovary-K1 cells (CHO/PA16-gpPDPN) in flow cytometry. The KD value of PMab-314 for CHO/PA16-gpPDPN was determined as 1.3 × 10-8 M. Furthermore, PMab-314 is useful for detecting gpPDPN in western blot analysis. These findings indicate that PMab-314 is a useful tool for the analyses of gpPDPN-expressed cells.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
5
|
Okada Y, Suzuki H, Kaneko MK, Kato Y. Development of a Sensitive Anti-Mouse CD39 Monoclonal Antibody (C 39Mab-1) for Flow Cytometry and Western Blot Analyses. Monoclon Antib Immunodiagn Immunother 2024; 43:24-31. [PMID: 38197855 DOI: 10.1089/mab.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
CD39 is involved in adenosine metabolism by converting extracellular ATP to adenosine. As extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment, the inhibition of CD39 activity by monoclonal antibodies (mAbs) is one of the important strategies for tumor therapy. This study developed specific and sensitive mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and Screening method. The established anti-mCD39 mAb, C39Mab-1 (rat IgG2a, kappa), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) by flow cytometry. The kinetic analysis using flow cytometry indicated that the dissociation constant of C39Mab-1 for CHO/mCD39 was 7.3 × 10-9 M. Furthermore, C39Mab-1 detected the lysate of CHO/mCD39 by western blot analysis. These results indicated that C39Mab-1 is useful for the detection of mCD39 in many functional studies.
Collapse
Affiliation(s)
- Yuki Okada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| |
Collapse
|
6
|
Ouchida T, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Establishment of Anti-Dog Programmed Cell Death Ligand 1 Monoclonal Antibodies for Immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2024; 43:17-23. [PMID: 38237003 DOI: 10.1089/mab.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Immune checkpoint blockade therapy has shown successful clinical outcomes in multiple human cancers. In dogs, several types of tumors resemble human tumors in many respects. Therefore, several groups have developed the anti-dog programmed cell death ligand 1 (dPD-L1) monoclonal antibodies (mAbs) and showed efficacy in several canine tumors. To examine the abundance of dPD-L1 in canine tumors, anti-dPD-L1 diagnostic mAbs for immunohistochemistry are required. In this study, we immunized the peptide in the dPD-L1 intracellular domain, and established anti-dPD-L1 mAbs, L1Mab-352 (mouse IgG1, kappa), and L1Mab-354 (mouse IgG1, kappa). In enzyme-linked immunosorbent assay, L1Mab-352 and L1Mab-354 showed high-binding affinity to the dPD-L1 peptide, and the dissociation constants (KD) were determined as 6.9 × 10-10 M and 7.2 × 10-10 M, respectively. Furthermore, L1Mab-352 and L1Mab-354 were applicable for the detection of dPD-L1 in immunohistochemical analysis in paraffin-embedded dPD-L1-overexpressed cells. These results indicated that L1Mab-352 and L1Mab-354 are useful for detecting dPD-L1 in immunohistochemical analysis.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Ouchida T, Tanaka T, Suzuki H, Uchida K, Nakagawa T, Li G, Nakamura T, Yanaka M, Handa S, Kaneko MK, Kato Y. PMab-301: An Anti-Giraffe Podoplanin Monoclonal Antibody for Immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2023; 42:209-215. [PMID: 38150189 DOI: 10.1089/mab.2023.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Immunohistochemistry staining is an essential method in pathological diagnoses. Podoplanin (PDPN) is a specific maker of alveolar epithelium, lymphatic vessels, and glomeruli. In this study, we established a novel anti-giraffe PDPN (girPDPN) mAb, PMab-301, using the Cell-Based Immunization and Screening (CBIS) method. PMab-301 (mouse IgG1, kappa) detected girPDPN in various applications, such as flow cytometry, western blot, and immunohistochemistry. PMab-301 specifically stained type-I alveolar cells using formalin-fixed paraffin-embedded giraffe lung tissues. Our findings suggest the potential usefulness of PMab-301 for the pathophysiological analyses of giraffe tissues.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Suzuki H, Tanaka T, Kudo Y, Tawara M, Hirayama A, Kaneko MK, Kato Y. A Rat Anti-Mouse CD39 Monoclonal Antibody for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2023; 42:203-208. [PMID: 38126892 DOI: 10.1089/mab.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
By converting extracellular adenosine triphosphate to adenosine, CD39 is involved in adenosine metabolism. The extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment. Therefore, the inhibition of CD39 activity by monoclonal antibodies (mAbs) is thought to be one of the important strategies for tumor therapy. In this study, we developed novel mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and Screening (CBIS) method. One of the established anti-mCD39 mAbs, C39Mab-2 (rat IgG2a, lambda), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) and an endogenously mCD39-expressed cell line (SN36) by flow cytometry. The kinetic analysis using flow cytometry indicated that the dissociation constant (KD) values of C39Mab-2 for CHO/mCD39 and SN36 were 5.5 × 10-9 M and 4.9 × 10-9 M, respectively. These results indicated that C39Mab-2 is useful for the detection of mCD39 in flow cytometry.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuma Kudo
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuki Tawara
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aoi Hirayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Nanamiya R, Suzuki H, Kaneko MK, Kato Y. Development of an Anti-EphB4 Monoclonal Antibody for Multiple Applications Against Breast Cancers. Monoclon Antib Immunodiagn Immunother 2023; 42:166-177. [PMID: 37824755 DOI: 10.1089/mab.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest receptor tyrosine kinase family. EphB4 is essential for cell adhesion and motility during embryogenesis. Pathologically, EphB4 is overexpressed and contributes to poor prognosis in various tumors. Therefore, specific monoclonal antibodies (mAbs) should be developed to predict the prognosis for multiple tumors with high EphB4 expression, including breast and gastric cancers. This study aimed to develop specific anti-EphB4 mAbs for multiple applications using the Cell-Based Immunization and Screening method. EphB4-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/EphB4) cells were immunized into mice, and we established an anti-EphB4 mAb (clone B4Mab-7), which is applicable for flow cytometry, Western blot, and immunohistochemistry (IHC). B4Mab-7 reacted with endogenous EphB4-positive breast cancer cell line, MCF-7, but did not react with EphB4-knockout MCF-7 (BINDS-52) in flow cytometry. Dissociation constant (KD) values were determined to be 2.9 × 10-9 M and 1.3 × 10-9 M by flow cytometric analysis for CHO/EphB4 and MCF-7 cells, respectively. B4Mab-7 detected the EphB4 protein bands from breast cancer cells in Western blot, and stained breast cancer tissues in IHC. Altogether, B4Mab-7 is very useful for detecting EphB4 in various applications.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Asano T, Tanaka T, Suzuki H, Li G, Nanamiya R, Tateyama N, Isoda Y, Okada Y, Kobayashi H, Yoshikawa T, Kaneko MK, Kato Y. Development of a Novel Anti-Mouse CCR6 Monoclonal Antibody (C 6Mab-13) by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:343-349. [PMID: 36383115 DOI: 10.1089/mab.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a G protein-coupled receptor family member that is highly expressed in B lymphocytes, certain subsets of effector and memory T cells, and immature dendritic cells. CCR6 has only one chemokine ligand, CCL20. The CCL20-CCR6 axis has been recognized as a therapeutic target for autoimmune diseases and tumor. This study developed specific monoclonal antibodies (mAbs) against mouse CCR6 (mCCR6) using the peptide immunization method. The established anti-mCCR6 mAb, C6Mab-13 (rat IgG1, kappa), reacted with mCCR6-overexpressed Chinese hamster ovary-K1 (CHO/mCCR6), and mCCR6-endogenously expressed P388 (mouse lymphoid neoplasma) and J774-1 (mouse macrophage-like) cells in flow cytometry. The dissociation constant (KD) of C6Mab-13 for CHO/mCCR6 cells was determined to be 2.8 × 10-9 M, indicating that C6Mab-13 binds to mCCR6 with high affinity. In summary, C6Mab-13 is useful for detecting mCCR6-expressing cells through flow cytometry.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Okada
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiyori Kobayashi
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
11
|
Tanaka T, Suzuki H, Isoda Y, Asano T, Nakamura T, Yanaka M, Handa S, Takahashi N, Okuno S, Yoshikawa T, Li G, Nanamiya R, Goto N, Tateyama N, Okada Y, Kobayashi H, Kaneko MK, Kato Y. Development of a Sensitive Anti-Human CCR9 Monoclonal Antibody (C 9Mab-11) by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:303-310. [PMID: 36383113 DOI: 10.1089/mab.2022.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The C-C chemokine receptor 9 (CCR9) belongs to the G-protein-coupled receptor superfamily, and is highly expressed on the T cells and intestinal cells. CCR9 regulates various immune responses by binding to the C-C chemokine ligand, CCL25, and is involved in inflammatory diseases and tumors. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR9 is necessary for treatment and diagnosis. In this study, we established a specific anti-human CCR9 (hCCR9) mAb; C9Mab-11 (mouse IgG2a, kappa), using the synthetic peptide immunization method. C9Mab-11 reacted with hCCR9-overexpressed Chinese hamster ovary-K1 (CHO/hCCR9) and hCCR9-endogenously expressed MOLT-4 (human T-lymphoblastic leukemia) cells in flow cytometry. The dissociation constant (KD) of C9Mab-11 for CHO/hCCR9 and MOLT-4 cells were determined to be 1.2 × 10-9 M and 4.9 × 10-10 M, respectively, indicating that C9Mab-11 possesses a high affinity for both exogenously and endogenously hCCR9-expressing cells. Furthermore, C9Mab-11 clearly detected hCCR9 protein in CHO/hCCR9 cells using western blot analysis. In summary, C9Mab-11 can be a useful tool for analyzing hCCR9-related biological responses.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nozomi Takahashi
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Okuno
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Okada
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiyori Kobayashi
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Saito M, Suzuki H, Tanaka T, Asano T, Kaneko MK, Kato Y. Development of an Anti-Mouse CCR8 Monoclonal Antibody (C 8Mab-1) for Flow Cytometry and Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:333-338. [PMID: 35483056 DOI: 10.1089/mab.2021.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been widely accepted that monoclonal antibody (mAb) is an effective tool for cancer immunotherapy. The C-C motif chemokine receptor 8 (CCR8) is highly expressed in regulatory T cells and many cancers and is associated with the progression of the cancers. However, its role in cancer progression remains unclear. Thus, the development of mAbs for CCR8 leads to cancer immunotherapy and elucidation of unknown mechanisms of CCR8-dependent cancer progression. In this study, we have developed an anti-mouse CCR8 (mCCR8) mAb (clone C8Mab-1, rat IgG2a, kappa) using the Cell-Based Immunization and Screening (CBIS) method. We showed that C8Mab-1 and its recombinant antibody (recC8Mab-1) bind to mCCR8-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/mCCR8), but not to the parental CHO-K1 cells, in flow cytometry and immunofluorescence. Moreover, C8Mab-1 and recC8Mab-1 specifically reacted to P388 (a mouse lymphocyte-like cells) and J774-1 (a mouse macrophage-like cells), which express endogenous mCCR8, in both applications. These results suggest that C8Mab-1, developed using the CBIS method, is useful for flow cytometry and immunocytochemistry against exogenous and endogenous mCCR8.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Nanamiya R, Suzuki H, Takei J, Li G, Goto N, Harada H, Saito M, Tanaka T, Asano T, Kaneko MK, Kato Y. Development of Monoclonal Antibody 281-mG 2a-f Against Golden Hamster Podoplanin. Monoclon Antib Immunodiagn Immunother 2022; 41:311-319. [PMID: 35483059 DOI: 10.1089/mab.2021.0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Golden (Syrian) hamster (Mesocricetus auratus) is a small animal model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Pathological analyses of the tissues are required to understand the pathogenesis of SARS-CoV-2 and the evaluation of therapeutic modalities, including neutralizing monoclonal antibodies (mAbs). However, mAbs that recognize the golden hamster-derived antigens and distinguish specific cell types, such as the pneumocytes, are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. In this study, an anti-Chinese hamster (Cricetulus griseus) PDPN mAb PMab-281 (IgG3, kappa) was established using the Cell-Based Immunization and Screening (CBIS) method. A defucosylated mouse IgG2a version of PMab-281 (281-mG2a-f) was also developed. The 281-mG2a-f strongly recognized both the Chinese hamster and the golden hamster PDPN using flow cytometry and could detect lung type I alveolar epithelial cells, lymphatic endothelial cells, and Bowman's capsules in the kidney from the golden hamster using immunohistochemistry. These results suggest the usefulness of 281-mG2a-f for analyzing the golden hamster-derived tissues and cells for SARS-CoV-2 research.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Saito M, Suzuki H, Asano T, Tanaka T, Yoshikawa T, Kaneko MK, Kato Y. KLMab-1: An Anti-human KLRG1 Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:279-284. [PMID: 36306514 DOI: 10.1089/mab.2022.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Immune checkpoint molecules have received attention as targets of cancer immunotherapy. Killer cell lectin-like receptor subfamily G member 1 (KLRG1) is one of the immune checkpoint molecules expressed in CD4+ T, CD8+ T, and natural killer (NK) cells. KLRG1 exhibits antiviral and antitumor immunity, and its expression in T and NK cells is upregulated by viral infectious diseases and some tumors. Thus, monoclonal antibodies (mAbs) for KLRG1 would be useful tools for the diagnosis and immunotherapy against viral infectious diseases and cancers. We have developed anti-human KLRG1 (hKLRG1) mAb (clone KLMab-1, mouse IgG1, kappa) by the Cell-Based Immunization and Screening method. We have also demonstrated that KLMab-1 recognizes both exogenous and endogenous hKLRG1 in flow cytometry. In this study, we first showed that KLMab-1 and its recombinant mAb (recKLMab-1) bound to exogenous hKLRG1 overexpressed in Chinese hamster ovary (CHO)-K1 cells, but not in parental CHO-K1 cells, in immunocytochemistry. We next showed that both mAbs detected endogenous hKLRG1 expressed in human NK cells. These results demonstrate that KLMab-1 and recKLMab-1 are available for immunocytochemistry.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
Tanaka T, Suzuki H, Li G, Nanamiya R, Isoda Y, Okada Y, Kobayashi H, Yoshikawa T, Kaneko MK, Kato Y. Epitope Mapping of the Anti-Human CC Chemokine Receptor Type-2 Monoclonal Antibody (K036C2). Monoclon Antib Immunodiagn Immunother 2022; 41:285-289. [DOI: 10.1089/mab.2022.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Okada
- Department of Molecular Pharmacology, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiyori Kobayashi
- Department of Molecular Pharmacology, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, and Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Puluhulawa LE, Joni IM, Elamin KM, Mohammed AFA, Muchtaridi M, Wathoni N. Chitosan-Hyaluronic Acid Nanoparticles for Active Targeting in Cancer Therapy. Polymers (Basel) 2022; 14:polym14163410. [PMID: 36015667 PMCID: PMC9416118 DOI: 10.3390/polym14163410] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the most common cause of death worldwide; therefore, there is a need to discover novel treatment modalities to combat it. One of the cancer treatments is nanoparticle technology. Currently, nanoparticles have been modified to have desirable pharmacological effects by using chemical ligands that bind with their specific receptors on the surface of malignant cells. Chemical grafting of chitosan nanoparticles with hyaluronic acid as a targeted ligand can become an attractive alternative for active targeting. Hence, these nanoparticles can control drug release with pH- responsive stimuli, and high selectivity of hyaluronic acid to CD44 receptors makes these nanoparticles accumulate more inside cells that overexpress these receptors (cancer cells). In this context, we discuss the benefits and recent findings of developing and utilizing chitosan–hyaluronic acid nanoparticles against distinct forms of cancer malignancy. From here we know that chitosan–hyaluronic acid nanoparticles (CHA-Np) can produce a nanoparticle system with good characteristics, effectiveness, and a good active targeting on various types of cancer cells. Therefore, this system is a good candidate for targeted drug delivery for cancer therapy, anticipating that CHA-Np could be further developed for various cancer therapy applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Muchtaridi Muchtaridi
- Departement of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-22-824-888888
| |
Collapse
|
17
|
Tanaka T, Li G, Saito M, Suzuki H, Asano T, Kaneko MK, Kato Y. Development of an Anti-human CCR2 Monoclonal Antibody (C 2Mab-9) by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:188-193. [PMID: 35917563 DOI: 10.1089/mab.2022.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CC chemokine receptor type-2 (CCR2) is one of the members of the G protein-coupled receptor superfamily, which are expressed on the cell surface of immune and tumor cells. CCR2 binds to the C-C motif chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1), which is produced by various cells, including tumor and immune-related cells. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR2 has been desired for treatment and diagnosis. In this study, we established a specific antihuman CCR2 (hCCR2) mAb, C2Mab-9 (mouse IgG1, kappa), using the synthetic peptide immunization method. Flow cytometric and immunocytochemical results showed that C2Mab-9 reacted with hCCR2-expressing U937 (human histiocytic lymphoma) and natural killer cells. Furthermore, C2Mab-9 showed the moderate binding affinity for both cells. Conclusively, C2Mab-9 can be a useful tool for analyzing hCCR2-related biological responses.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Development of a Novel Anti-EpCAM Monoclonal Antibody for Various Applications. Antibodies (Basel) 2022; 11:antib11020041. [PMID: 35735360 PMCID: PMC9220218 DOI: 10.3390/antib11020041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a cell surface glycoprotein, which is widely expressed on normal and cancer cells. EpCAM is involved in cell adhesion, proliferation, survival, stemness, and tumorigenesis. Therefore, EpCAM is thought to be a promising target for cancer diagnosis and therapy. In this study, we established anti-EpCAM monoclonal antibodies (mAbs) using the Cell-Based Immunization and Screening (CBIS) method. We characterized them using flow cytometry, Western blotting, and immunohistochemistry. One of the established recombinant anti-EpCAM mAbs, recEpMab-37 (mouse IgG1, kappa), reacted with EpCAM-overexpressed Chinese hamster ovary-K1 cells (CHO/EpCAM) or a colorectal carcinoma cell line (Caco-2). In contrast, recEpMab-37 did not react with EpCAM-knocked out Caco-2 cells. The KD of recEpMab-37 for CHO/EpCAM and Caco-2 was 2.0 × 10−8 M and 3.2 × 10−8 M, respectively. We observed that EpCAM amino acids between 144 to 164 are involved in recEpMab-37 binding. In Western blot analysis, recEpMab-37 detected the EpCAM of CHO/EpCAM and Caco-2 cells. Furthermore, recEpMab-37 could stain formalin-fixed paraffin-embedded colorectal carcinoma tissues by immunohistochemistry. Taken together, recEpMab-37, established by the CBIS method, is useful for detecting EpCAM in various applications.
Collapse
|
19
|
Goto N, Suzuki H, Tanaka T, Asano T, Kaneko MK, Kato Y. Epitope Mapping of an Anti-Chinese/Golden Hamster Podoplanin Monoclonal Antibody. Monoclon Antib Immunodiagn Immunother 2022; 41:163-169. [PMID: 35666546 DOI: 10.1089/mab.2022.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chinese hamster (Cricetulus griseus) and golden hamster (Mesocricetus auratus) are important animal models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, which affect several organs, including respiratory tract, lung, and kidney. Podoplanin (PDPN) is a marker of lung type I alveolar cells, kidney podocytes, and lymphatic endothelial cells. The development of anti-PDPN monoclonal antibodies (mAbs) for these animals is essential to evaluate the pathogenesis by SARS-CoV-2 infections. Using the Cell-Based Immunization and Screening method, we previously developed an anti-Chinese hamster PDPN (ChamPDPN) mAb, PMab-281 (mouse IgG3, kappa), and further changed its subclass into IgG2a (281-mG2a-f), both of which can recognize not only ChamPDPN but also golden hamster PDPN (GhamPDPN) by flow cytometry and immunohistochemistry. In this study, we examined the critical epitope of 281-mG2a-f, using enzyme-linked immunosorbent assay (ELISA) with synthesized peptides. First, we performed ELISA with peptides derived from ChamPDPN and GhamPDPN extracellular domain, and found that 281-mG2a-f reacted with the peptides, which commonly possess the KIPFEELxT sequence. Next, we analyzed the reaction with the alanine-substituted mutants, and revealed that 281-mG2a-f did not recognize the alanine-substituted peptides of I75A, F77A, and E79A of ChamPDPN. Furthermore, these peptides could not inhibit the recognition of 281-mG2a-f to ChamPDPN-expressing cells by flow cytometry. The results indicate that the binding epitope of 281-mG2a-f includes Ile75, Phe77, and Glu79 of ChamPDPN, which are shared with GhamPDPN.
Collapse
Affiliation(s)
- Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Tanaka T, Li G, Asano T, Kaneko MK, Suzuki H, Kato Y. Epitope Mapping of the Anti-Human CCR2 Monoclonal Antibody C 2Mab-9. Monoclon Antib Immunodiagn Immunother 2022; 41:150-156. [PMID: 35666539 DOI: 10.1089/mab.2022.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CC chemokine receptor type-2 (CCR2) belongs to the G protein-coupled receptors superfamily, localized on cell surface of some immune-related cells, including monocytes and macrophages. CCR2 and its ligand CCL2 are involved in the progression of various diseases such as cancers. Therefore, CCR2-targeted monoclonal antibodies (mAbs) are needed for treatment and diagnosis. Previously, we successfully developed an anti-human CCR2 (hCCR2) mAb, C2Mab-9 (mouse IgG1, kappa), which is applicable for flow cytometry and immunocytochemistry. In this study, we investigated the critical epitope of C2Mab-9. We conducted enzyme-linked immunosorbent assay (ELISA) using several N-terminal peptides of hCCR2, and demonstrated that C2Mab-9 recognizes 11-29 and 21-39 amino acids of hCCR2. We further performed ELISA using 20 peptides, which include alanine substitution of hCCR2. C2Mab-9 lost the reaction to the alanine-substituted peptides of F23A, F24A, D25A, Y26A, and D27A. Among them, F23A, F24A, D25A, and Y26A did not block the C2Mab-9 reaction with U937 cells in flow cytometry. These results indicate that the critical binding epitope of C2Mab-9 includes Phe23, Phe24, Asp25, and Tyr26.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Saito M, Suzuki H, Kaneko MK, Kato Y. TgMab-2: An Anti-human T Cell Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibitory Motif Domain Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:157-162. [PMID: 35736625 DOI: 10.1089/mab.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is one of the immune checkpoint molecules. TIGIT is expressed in T or natural killer (NK) cells and is upregulated in several cancers. Because TIGIT suppresses the antitumor activity of the T or NK cells by binding to its ligand, such as CD155, CD112, and CD113, TIGIT can be a molecular marker or a therapeutic target for cancer immunotherapy. We previously developed an anti-human TIGIT (hTIGIT) monoclonal antibody (mAb; clone TgMab-2; mouse IgG1, kappa) by the Cell-Based Immunization and Screening method. TgMab-2 binds to hTIGIT with high binding affinity in flow cytometry. In this study, we investigated the availability of TgMab-2 and its recombinant mAb (recTgMab-2) in immunocytochemistry. We found that TgMab-2 and recTgMab-2 bind to hTIGIT-overexpressed Chinese hamster ovary (CHO)-K1 cells, but not parental CHO-K1 cells, indicating that both mAbs specifically recognize hTIGIT. Furthermore, both mAbs recognized endogenous hTIGIT expressed in human NK cells in immunocytochemistry. These results demonstrate that TgMab-2 and recTgMab-2 are applicable for immunocytochemistry against hTIGIT.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
22
|
Kitamura K, Suzuki H, Kaneko MK, Kato Y. Cx 6Mab-1: A Novel Anti-Mouse CXCR6 Monoclonal Antibody Established by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:133-141. [PMID: 35736626 DOI: 10.1089/mab.2022.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CXC chemokine receptor 6 (CXCR6) is a member of the G protein-coupled receptor family that is highly expressed in helper T type 1 cells, natural killer cells, cytotoxic T lymphocytes, and various type of cells in tumor microenvironment (TME). CXCR6 has been proposed as a therapeutic target against tumors through regulation of the tumor TME. In this study, we developed specific and sensitive monoclonal antibodies (mAbs) for mouse CXCR6 (mCXCR6), which are useful for flow cytometry and Western blotting by N-terminal peptide immunization into rat. The established anti-mCXCR6 mAb, Cx6Mab-1 (rat IgG1, kappa), reacted with not only mCXCR6-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR6) but also mCXCR6-endogenously expressed cell lines, such as P388 (mouse lymphoid neoplasm) and J774-1 (mouse macrophage-like) through flow cytometry. Kinetic analyses using flow cytometry indicated that the dissociation constants (KD) of Cx6Mab-1 for CHO/mCXCR6, P388, and J774-1 cells were 1.7 × 10-9 M, 3.4 × 10-7 M, and 3.8 × 10-7 M, respectively. Furthermore, Cx6Mab-1 could detect endogenous mCXCR6 in P388 and J774-1 cells by Western blotting. These results indicated that Cx6Mab-1 is useful for detecting mCXCR6 by flow cytometry and Western blotting, and provides a possibility for targeting CXCR6-expressing cells in vivo experiments.
Collapse
Affiliation(s)
- Kaishi Kitamura
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Development of a Novel Anti-CD44 Monoclonal Antibody for Multiple Applications against Esophageal Squamous Cell Carcinomas. Int J Mol Sci 2022; 23:ijms23105535. [PMID: 35628345 PMCID: PMC9146722 DOI: 10.3390/ijms23105535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
CD44 is a cell surface glycoprotein, which is expressed on normal cells, and overexpressed on cancer cells. CD44 is involved in cell adhesion, migration, proliferation, survival, stemness, and chemo-resistance. Therefore, CD44 is thought to be a promising target for cancer diagnosis and therapy. In this study, we established anti-CD44 monoclonal antibodies (mAbs) by immunizing mice with a CD44 variant (CD44v3-10) ectodomain and screening using enzyme-linked immunosorbent assay. We then characterized them using flow cytometry, Western blotting, and immunohistochemistry. One of the established clones (C44Mab-46; IgG1, kappa) reacted with CD44 standard isoform (CD44s)-overexpressed Chinese hamster ovary-K1 cells (CHO/CD44s) or esophageal squamous cell carcinoma (ESCC) cell lines (KYSE70 and KYSE770). The apparent KD of C44Mab-46 for CHO/CD44s, KYSE70, and KYSE770 was 1.1 × 10-8 M, 4.9 × 10-8 M, and 4.1 × 10-8 M, respectively. C44Mab-46 detected CD44s of CHO/CD44s and KYSE70, and CD44 variants of KYSE770 in Western blot analysis. Furthermore, C44Mab-46 strongly stained the formalin-fixed paraffin-embedded ESCC tissues in immunohistochemistry. Collectively, C44Mab-46 is very useful for detecting CD44 in various applications.
Collapse
|
24
|
Asano T, Suzuki H, Goto N, Tanaka T, Kaneko MK, Kato Y. Establishment of Novel Anti-Mouse CCR3 Monoclonal Antibodies (C 3Mab-6 and C 3Mab-7) by N-terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:94-100. [PMID: 35471054 DOI: 10.1089/mab.2021.0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The CC chemokine receptor 3 (CCR3) is a member of the G protein-coupled receptor family that is highly expressed in eosinophils and basophils. CCR3 has been proposed as a therapeutic target for human immunodeficiency virus and allergy diagnosis. Therefore, in this study, we developed specific and sensitive monoclonal antibodies (mAbs) for mouse CCR3 (mCCR3), which are useful for flow cytometry by peptide immunization. The established anti-mCCR3 mAbs, C3Mab-6 (rat IgG1, kappa) and C3Mab-7 (rat IgG1, kappa), reacted with mCCR3-overexpressed Chinese hamster ovary-K1 (CHO/mCCR3), in addition to mCCR3-endogenously expressed cell lines, such as P388 (mouse lymphoid neoplasma) and J774-1 (mouse macrophage-like) through flow cytometry. Kinetic analyses using flow cytometry indicated that the dissociation constants (KDs) of C3Mab-6 for CHO/mCCR3, P388, and J774-1 cells were 8.7 × 10-9 M, 1.4 × 10-7 M, and 1.7 × 10-7 M, respectively, whereas the KDs of C3Mab-7 for these cell lines were 3.7 × 10-9 M, 5.1 × 10-7 M, and 3.1 × 10-7 M, respectively. Results also indicated that C3Mab-6 and C3Mab-7 are useful for detecting cells expressing CCR3 through flow cytometry, thereby making them potentially beneficial for treating CCR3-expressing cells.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
25
|
Asano T, Suzuki H, Tanaka T, Saito M, Li G, Goto N, Nanamiya R, Kaneko MK, Kato Y. C 3Mab-3: A Monoclonal Antibody for Mouse CC Chemokine Receptor 3 for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2022; 41:74-79. [PMID: 35471049 DOI: 10.1089/mab.2021.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
CC chemokine receptor 3 (CCR3) belongs to the G protein-coupled receptor family and is highly expressed in eosinophils and basophils. CCR3 is essential for recruiting eosinophils into the lung. Moreover, CCR3 was found in the serum of colorectal cancer patients higher than in the control group. Therefore, CCR3 will be a useful target for asthma and colorectal cancer diagnosis. This study developed a specific and sensitive monoclonal antibody (mAb) for mouse CCR3 (mCCR3), which is useful for flow cytometry using the Cell-Based Immunization and Screening method. The established anti-mCCR3 mAb, C3Mab-3 (rat IgG2a, kappa), reacted with mCCR3-overexpressed Chinese hamster ovary-K1 (CHO/mCCR3) cells through flow cytometry. C3Mab-3 also reacted with P388 (mouse lymphoid neoplasma) and J774-1 (mouse macrophage-like) cells, which express mCCR3 endogenously. Kinetic analyses using flow cytometry indicated that KDs of C3Mab-3 for CHO/mCCR3, P388, and J774-1 cells were 4.3 × 10-8 M, 2.6 × 10-7 M, and 2.4 × 10-7 M, respectively. C3Mab-3 could be a valuable tool for elucidating mCCR3-related biological response using flow cytometry.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Goto N, Suzuki H, Tanaka T, Asano T, Kaneko MK, Kato Y. Development of a Monoclonal Antibody PMab-292 Against Ferret Podoplanin. Monoclon Antib Immunodiagn Immunother 2022; 41:101-109. [PMID: 35471053 DOI: 10.1089/mab.2021.0067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ferrets (Mustela putorius furo) have been used as small animal models to investigate severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) infections. Pathological analyses of these tissue samples, including those of the lung, are, therefore, essential to understand the pathogenesis of SARS-CoVs and evaluate the action of therapeutic monoclonal antibodies (mAbs) against this disease. However, mAbs that recognize ferret-derived proteins and distinguish between specific cell types, such as lung epithelial cells, are limited. Podoplanin (PDPN) has been identified as an essential marker in lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. In this study, an anti-ferret PDPN (ferPDPN) mAb PMab-292 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening (CBIS) method. PMab-292 recognized ferPDPN-overexpressed Chinese hamster ovary-K1 (CHO/ferPDPN) cells by flow cytometry and Western blotting. The kinetic analysis using flow cytometry showed that the KD of PMab-292 for CHO/ferPDPN was 3.4 × 10-8 M. Furthermore, PMab-292 detected lung type I alveolar epithelial cells, lymphatic endothelial cells, and glomerular/Bowman's capsule in the kidney using immunohistochemistry. Hence, these results propose the usefulness of PMab-292 in analyzing ferret-derived tissues for SARS-CoV-2 research.
Collapse
Affiliation(s)
- Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
27
|
Takei J, Suzuki H, Asano T, Tanaka T, Kaneko MK, Kato Y. Development of a Novel Anti-Mouse CCR4 Monoclonal Antibody (C 4Mab-1) by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:87-93. [PMID: 35471046 DOI: 10.1089/mab.2021.0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The CC chemokine receptor type-4 (CCR4) belongs to the G-protein-coupled receptor superfamily, expressed on the cell surface of T cells and its malignancy. Two CCR4 ligands (CCL17 and CCL22) bind to CCR4 that mediate physiological and pathological functions of T cell immune responses. Anti-CCR4 monoclonal antibody (mAb) mogamulizumab is approved for adult T cell leukemia/lymphoma and cutaneous T cell lymphomas. In addition, mogamulizumab can deplete regulatory T cells, implying the application to solid tumors as an immunomodulator. Therefore, the development of sensitive mAbs for CCR4 has been desired for basic research, diagnosis, and therapy. In this study, a specific, and sensitive anti-mouse CCR4 (mCCR4) mAb, C4Mab-1 (rat IgG1, kappa), was established using N-terminal peptide immunization. C4Mab-1 reacted with mCCR4-overexpressed Chinese hamster ovary (CHO)-K1 cells, P388 (mouse lymphoid neoplasm), and J774-1 (mouse macrophage-like) cells in flow cytometry. Kinetic analyses using flow cytometry showed that KDs of C4Mab-1 for CHO/mCCR4, P388, and J774-1 cells were 4.2 × 10-9 M, 5.4 × 10-7 M, and 1.1 × 10-6 M, respectively. C4Mab-1 could be a valuable tool for elucidating mCCR4-related biological responses.
Collapse
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Suzuki H, Saito M, Asano T, Tanaka T, Kitamura K, Kudo Y, Kaneko MK, Kato Y. C 8Mab-3: An Anti-Mouse CCR8 Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:110-114. [PMID: 35377236 DOI: 10.1089/mab.2022.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The C-C motif chemokine receptor 8 (CCR8) is highly expressed in regulatory T cells. CCR8 is also expressed in many cancers and is associated with those progression. The development of monoclonal antibodies (mAbs) for CCR8 leads to cancer immunotherapy and elucidation of unknown mechanisms of CCR8-dependent cancer progression. In this study, we have developed an anti-mouse CCR8 (mCCR8) mAb (clone C8Mab-3, rat IgG1, kappa) using the Cell-Based Immunization and Screening (CBIS) method. We revealed that C8Mab-3 and its recombinant antibody (recC8Mab-3) bind to mCCR8-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/mCCR8), but not to the parental CHO-K1 cells, in flow cytometry. In addition, C8Mab-3 and recC8Mab-3 reacted to P388 (a mouse lymphocyte-like cell) and J774-1 (a mouse macrophage-like cell), which express endogenous mCCR8. C8Mab-3 also detected exogenous and endogenous mCCR8 using immunocytochemistry. These results suggest that C8Mab-3, developed using the CBIS method, is useful for immunocytochemistry against exogenous and endogenous mCCR8.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaishi Kitamura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuma Kudo
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
29
|
Tanaka T, Li G, Asano T, Saito M, Kaneko MK, Suzuki H, Kato Y. Development of a Novel Anti-Mouse CCR2 Monoclonal Antibody (C 2Mab-6) by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:80-86. [PMID: 35377242 DOI: 10.1089/mab.2021.0063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The CC chemokine receptor type-2 (CCR2) belongs to the G-protein-coupled receptor superfamily, expressed on the cell surface of immune cells and tumors. CCR2 binds to the CC motif chemokine 2/monocyte chemoattractant protein-1, a CC chemokine, which is produced by various cells, including immune-related cells and tumors. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR2 has been desired for treatment and diagnosis. This study established a novel, specific, and sensitive anti-mouse CCR2 (mCCR2) mAb; C2Mab-6 (rat IgG1, kappa), using the mCCR2 synthetic peptide immunization method. C2Mab-6 reacted with mCCR2-overexpressed Chinese hamster ovary-K1 cells and L1210 (murine leukemia) cells, which express endogenous mCCR2 in flow cytometry. Furthermore, C2Mab-6 showed a high binding affinity for both cells. Hence, C2Mab-6 can be a useful tool for analyzing mCCR2-related biological responses, using flow cytometry.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
Takei J, Asano T, Suzuki H, Kaneko MK, Kato Y. Epitope Mapping of the Anti-CD44 Monoclonal Antibody (C 44Mab-46) Using Alanine-Scanning Mutagenesis and Surface Plasmon Resonance. Monoclon Antib Immunodiagn Immunother 2021; 40:219-226. [PMID: 34678095 DOI: 10.1089/mab.2021.0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD44 is a type I transmembrane protein expressed in various kinds of normal cancer cells, including pancreatic, breast, and oral cancers. CD44 is associated with cancer progression, metastases, and treatment resistance. CD44 consists of 20 exons, and various isoforms exist due to alternative splicing of the central 10 exons. Some splicing variants show cancer-specific expression patterns and are related to prognosis of patients with cancer. Therefore, CD44 targeting therapy has been attracting attention. In a previous study, we established an anti-CD44 monoclonal antibody, C44Mab-46 (IgG1, kappa), useful for flow cytometry, Western blotting, and immunohistochemistry by immunizing mice with CD44v3-10 ectodomain. This study investigated the binding epitope of C44Mab-46 using enzyme-linked immunosorbent assay (ELISA) and the surface plasmon resonance (SPR) with the synthesized peptide. ELISA results using deletion mutants showed that C44Mab-46 reacted with the amino acids (aa) of 161-180 aa of CD44. Further examination of the C44Mab-46 epitope using ELISA with point mutants in 161-180 aa of CD44 demonstrates that the C44Mab-46 epitope comprised Thr174, Asp177, and Val178. The SPR with point mutants in 161-180 aa of CD44 demonstrated that the C44Mab-46 epitope comprises Thr174, Asp175, Asp176, Asp177, and Val178. Together, the C44Mab-46 epitope was determined to be located in exon 5 of CD44.
Collapse
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
31
|
Asano T, Kaneko MK, Takei J, Tateyama N, Kato Y. Epitope Mapping of the Anti-CD44 Monoclonal Antibody (C 44Mab-46) Using the REMAP Method. Monoclon Antib Immunodiagn Immunother 2021; 40:156-161. [PMID: 34283655 DOI: 10.1089/mab.2021.0012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD44 functions as a major hyaluronan receptor on most cell types, with roles in cell adhesion, migration, proliferation, differentiation, and survival. The CD44 gene comprises 20 exons, with alternative splicing producing many different isoforms. CD44 variant isoforms exhibit tissue-specific expression patterns and have been studied as therapeutic targets for several cancers; therefore, anti-CD44 monoclonal antibodies (mAbs) are useful for investigating CD44 expression in various cancers. Previously, we established an anti-CD44 mAb, C44Mab-46 (IgG1, κ), by immunizing mice with the CD44v3-10 ectodomain. Although C44Mab-46 recognized all CD44 isoforms, the binding epitope of C44Mab-46 has not been determined. In this study, we first checked the reactivity of C44Mab-46 to several CD44v3-10 deletion mutants such as dN79, dN124, dN147, and dN224. We found the N-terminus of the C44Mab-46-binding epitope between residues 147 and 224 of CD44v3-10. We next investigated this epitope using a novel mapping system: RIEDL insertion for epitope mapping (REMAP) method. We constructed 31 CD44 standard (CD44s) mutants where the RIEDL tag was inserted into the expected epitope region in CD44s. We observed that the C44Mab-46 epitope constituted five amino acids: 174-TDDDV-178 of CD44s. Thus, the REMAP method could be used to determine mAb binding epitopes for membrane proteins.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
32
|
Asano T, Ohishi T, Takei J, Nakamura T, Nanamiya R, Hosono H, Tanaka T, Sano M, Harada H, Kawada M, Kaneko MK, Kato Y. Anti‑HER3 monoclonal antibody exerts antitumor activity in a mouse model of colorectal adenocarcinoma. Oncol Rep 2021; 46:173. [PMID: 34184091 PMCID: PMC8261196 DOI: 10.3892/or.2021.8124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
HER3 belongs to the epidermal growth factor receptor (EGFR) family and is known to form an active heterodimer with other three family members EGFR, HER2, and HER4. HER3 is overexpressed in lung, breast, colon, prostate, and gastric cancers. In the present study, we developed and validated an anti-HER3 monoclonal antibody (mAb), H3Mab-17 (IgG2a, kappa), by immunizing mice with HER3-overexpressed CHO-K1 cells (CHO/HER3). H3Mab-17 was found to react specifically with endogenous HER3 in colorectal carcinoma cell lines, using flow cytometry. The KD for H3Mab-17 in CHO/HER3 and Caco-2 (a colon cancer cell line) were determined to be 3.0×10−9 M and 1.5×10−9 M via flow cytometry, respectively, suggesting high binding affinity of H3Mab-17 to HER3. Then, we assessed the H3Mab-17 antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against Caco-2, and evaluated its antitumor capacity in a Caco-2 ×enograft model. In vitro experiments revealed H3Mab-17 had strongly induced both ADCC and CDC against Caco-2 cells. In vivo experiments on Caco-2 ×enografts revealed that H3Mab-17 treatment significantly reduced tumor growth compared with the control mouse IgG. These data indicated that H3Mab-17 could be a promising treatment option for HER3-expressing colon cancers.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8510, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
33
|
Patil S. CD44 Sorted Cells Have an Augmented Potential for Proliferation, Epithelial-Mesenchymal Transition, Stemness, and a Predominantly Inflammatory Cytokine and Angiogenic Secretome. Curr Issues Mol Biol 2021; 43:423-433. [PMID: 34205649 PMCID: PMC8929035 DOI: 10.3390/cimb43010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) have garnered attention with their potential for early diagnosis and prognosis of oral squamous cell carcinoma (OSCC). It is still indistinct whether CSCs are recognized with a specific set of characteristics. The present study aimed to assess the association of CD44 with stemness-related, Epithelial Mesenchymal Transition EMT-related genes and the secretome of the CSCs. The single-cell suspension from primary OSCC tumors was prepared by enzymatic digestion and the cells were cultured in-vitro. The cancer stem cells were isolated by CD44+ selection using magnetic cell-sorting. The expression of CD44, proliferation rate, gene expression of EMT-related transcription factors, stemness markers, cytokine levels and angiogenic factors in both cell population was assessed. The sorted CD44+ cells showed significantly higher proliferation rate than heterogenous population. The CD44 expression was >90% in the sorted cells which was higher than the heterogenous cells. The CD44+ CSCs cells demonstrated significant increased levels of EMT-related genes TWIST1 and CDH2 (N-cadherin), CSC-related genes CD44 and CD133 (PROM1), stemness-related genes OCT4, SOX2, inflammatory cytokines IL-1ß, IL-12, IL-18 and TNF-α and angiogenic factors Angiopoietin-1, Angiopoietin-2, bFGF and VEGF while levels of epithelial gene CDH1 (E-cadherin) decreased in comparison to mixed cell population. The genetic and secretome profiling of the CD44+ CSCs could serve as diagnostic and prognostic tools in the treatment of oral cancers.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
34
|
Nanamiya R, Takei J, Asano T, Tanaka T, Sano M, Nakamura T, Yanaka M, Hosono H, Kaneko MK, Kato Y. Development of Anti-Human CC Chemokine Receptor 9 Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:101-106. [PMID: 34161159 DOI: 10.1089/mab.2021.0007] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CC chemokine receptor 9 (CCR9) belongs to the beta chemokine receptor family and is mainly distributed on the surface of immature T lymphocytes and enterocytes. This receptor is highly expressed in rheumatoid arthritis, colitis, type 2 diabetes, and various tumors. Therefore, more sensitive monoclonal antibodies (mAbs) need to be developed to predict the prognosis of many high CCR9 expression diseases. Because CCR9 is a structurally unstable G protein-coupled receptor, it has been difficult to develop anti-CCR9 mAbs using the traditional method. This study developed anti-human CCR9 (hCCR9) mAbs for flow cytometry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with hCCR9-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/hCCR9), and hybridomas showing strong signals from CHO/hCCR9 and no signals from CHO-K1 cells were selected by flow cytometry. We established an anti-hCCR9 mAb, C9Mab-1 (IgG1, kappa), which detected hCCR9 in MOLT-4 leukemia T lymphoblast cells and CHO/hCCR9 cells by flow cytometry. Our study showed that an anti-hCCR9 mAb was developed more rapidly by the CBIS method than the previous method.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Hosono H, Asano T, Takei J, Sano M, Tanaka T, Kaneko MK, Kato Y. Development of an Anti-Elephant Podoplanin Monoclonal Antibody PMab-265 for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:141-145. [PMID: 34042502 DOI: 10.1089/mab.2021.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of specific antibodies is essential to understand a wide variety of biological phenomena and pathophysiological analyses. Podoplanin (PDPN), a type I transmembrane glycoprotein, is known as a diagnostic marker. Anti-PDPN monoclonal antibodies (mAbs) against many species, such as human, mouse, rat, rabbit, dog, bovine, cat, tiger, horse, pig, goat, alpaca, Tasmanian devil, bear, whale, and sheep, have been established in recent studies. However, sensitive and specific mAbs against elephant PDPN (elePDPN) have not been established. Thus, this study established a novel mAb against African savanna elephant (Loxodonta africana) PDPN using the Cell-Based Immunization and Screening method. elePDPN-overexpressed Chinese hamster ovary-K1 (CHO/elePDPN) cells were immunized, and mAbs were screened against elePDPN using flow cytometry. One of the mAbs, PMab-265 (IgM, κ), specifically detected CHO/elePDPN cells by flow cytometry. These findings suggested the potential usefulness of PMab-265 for the functional analyses of elePDPN.
Collapse
Affiliation(s)
- Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Tanaka T, Asano T, Sano M, Takei J, Hosono H, Nanamiya R, Nakamura T, Yanaka M, Harada H, Fukui M, Suzuki H, Uchida K, Nakagawa T, Kato Y, Kaneko MK. Development of Monoclonal Antibody PMab-269 Against California Sea Lion Podoplanin. Monoclon Antib Immunodiagn Immunother 2021; 40:124-133. [PMID: 34042540 DOI: 10.1089/mab.2021.0011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of protein-specific antibodies is essential for understanding a wide variety of biological phenomena. Parasitic and viral infections and cancers are known to occur within California sea lion (Zalophus californianus) populations. However, sensitive and specific monoclonal antibodies (mAbs) for the pathophysiological analysis of California sea lion tissues have not yet been developed. A type I transmembrane glycoprotein, podoplanin (PDPN), is a known diagnostic marker of lymphatic endothelial cells. We have previously developed several anti-PDPN mAbs in various mammalian species, with applications in flow cytometry, Western blotting, and immunohistochemistry. In this study, we established a novel mAb against California sea lion PDPN (seaPDPN), clone PMab-269 (mouse IgG1, kappa), using a Cell-Based Immunization and Screening method. PMab-269 is specifically detected in seaPDPN-overexpressed Chinese hamster ovary (CHO)-K1 cells using flow cytometry and Western blotting. Moreover, PMab-269 clearly identified pulmonary type I alveolar cells, renal podocytes, and colon lymphatic endothelial cells in California sea lion tissues using immunohistochemistry. These findings demonstrate the usefulness of PMab-269 for the pathophysiological analysis of lung, kidney, and lymphatic tissues of the California sea lion.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | | | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, Sendai Medical Center, Sendai, Japan
| | - Kazuyuki Uchida
- Laboratories of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Takayuki Nakagawa
- Laboratories of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
37
|
Tanaka T, Ohishi T, Asano T, Takei J, Nanamiya R, Hosono H, Sano M, Harada H, Kawada M, Kaneko MK, Kato Y. An anti‑TROP2 monoclonal antibody TrMab‑6 exerts antitumor activity in breast cancer mouse xenograft models. Oncol Rep 2021; 46:132. [PMID: 34013368 PMCID: PMC8144932 DOI: 10.3892/or.2021.8083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2), reported to be overexpressed in several types of cancer, is involved in cell proliferation, invasion, metastasis, and poor prognosis of many types of cancer. Previously, a highly sensitive anti-TROP2 monoclonal antibody (clone TrMab-6; mouse IgG2b, κ) was developed using a Cell-Based Immunization and Screening (CBIS) method. TrMab-6 was useful for investigations using flow cytometry, western blot, and immunohistochemistry. The aim of the present study was to investigate whether TrMab-6 possesses in vitro antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) activities or in vivo antitumor activities using mouse xenograft models of TROP2-overexpressed CHO-K1 (CHO/TROP2) and breast cancer cell lines, including MCF7, MDA-MB-231, and MDA-MB-468. In vitro experiments revealed that TrMab-6 strongly induced ADCC and CDC activities against CHO/TROP2 and the three breast cancer cell lines, whereas it did not show those activities against parental CHO-K1 and MCF7/TROP2-knockout cells. Furthermore, in vivo experiments on CHO/TROP2 and MCF7 ×enografts revealed that TrMab-6 significantly reduced tumor growth, whereas it did not show antitumor activities against parental CHO-K1 and MCF7/TROP2-knockout xenografts. The findings suggest that TrMab-6 is a promising treatment option for TROP2-expressing breast cancers.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8510, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
38
|
Asano T, Nanamiya R, Takei J, Nakamura T, Yanaka M, Hosono H, Tanaka T, Sano M, Kaneko MK, Kato Y. Development of Anti-Mouse CC Chemokine Receptor 3 Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:107-112. [PMID: 33877898 DOI: 10.1089/mab.2021.0009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CC chemokine receptor 3 (CCR3), also known as CD193, belongs to class A of G protein-coupled receptors and is present in high levels in eosinophils, basophils, and airway epithelial cells. CCR3 is considered the therapeutic target for human immunodeficiency virus (HIV) infections and allergic diseases; therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR3 has been desired. This study aimed to establish a specific and sensitive mAb against mouse CCR3 (mCCR3) useful for flow cytometry analysis by employing the Cell-Based Immunization and Screening (CBIS) method. The generated anti-mCCR3 mAb, C3Mab-2 (rat IgG2b, kappa), was found to react with mCCR3-overexpressed Chinese hamster ovary-K1 (CHO/mCCR3) cells, according to flow cytometric analysis. Also, it reacted with P388 (mouse lymphoid neoplasm) or J774-1 (mouse macrophage-like) cells, which express endogenous mCCR3. Taken together, C3Mab-2, generated by the CBIS method, can be a valuable tool for detecting mCCR3 on the surface of mouse cells.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
39
|
Asano T, Nanamiya R, Tanaka T, Kaneko MK, Kato Y. Development of Antihuman Killer Cell Lectin-Like Receptor Subfamily G Member 1 Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:76-80. [PMID: 33900816 DOI: 10.1089/mab.2021.0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Killer cell lectin-like receptor subfamily G member 1 (KLRG1), a type II transmembrane protein, was identified as an inhibitory receptor expressed on natural killer (NK) cells and certain T cells. The protein regulates effector functions and developmental processes in these cells. In this study, we established a specific and sensitive monoclonal antibody (mAb) for human KLRG1 (hKLRG1), which is useful for flow cytometry, using a Cell-Based Immunization and Screening (CBIS) method. The established anti-hKLRG1 mAb, KLMab-1 (mouse IgG1, kappa), reacted with overexpressed hKLRG1 in Chinese hamster ovary-K1 (CHO/hKLRG1) and human NK cells, which also expressed endogenous hKLRG1 as confirmed by flow cytometry. KLMab-1, which was established by the CBIS method, could be useful for elucidating the hKLRG1-related biological response by flow cytometry.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
40
|
Takei J, Asano T, Nanamiya R, Nakamura T, Yanaka M, Hosono H, Tanaka T, Sano M, Kaneko MK, Harada H, Kato Y. Development of Anti-human T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT) Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:71-75. [PMID: 33900817 DOI: 10.1089/mab.2021.0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death-ligand 1 (PD-L1), programmed cell death-1 (PD-1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) recently made a significant survival rate improvement in cancer treatment. T cell immunoreceptor with Ig and ITIM domains (TIGIT) is expressed in T and NK cells related to their activities. It has a single extracellular immunoglobulin domain, a type 1 transmembrane domain, and a single intracellular ITIM. TIGIT binds with poliovirus receptor (PVR) or PVR2, resulting in suppressing T and NK cell activities. Some studies showed that the combined use of a TIGIT inhibitor with another immune checkpoint inhibitor enhanced antitumor activities more strongly than their single use. Therefore, TIGIT should be a new target for immunotherapy. In this study, we developed new anti-human TIGIT (hTIGIT) monoclonal antibodies (mAbs) using the Cell-Based Immunization and Screening (CBIS) method. Mice were immunized with hTIGIT-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/hTIGIT), and hybridomas were screened by flow cytometry. One of the mAbs, TgMab-2 (IgG1, kappa), specifically and sensitively detects hTIGIT in CHO/hTIGIT and NK cells. The dissociation constants (KD) of TgMab-2 for CHO/hTIGIT cells were determined to be 3.5 × 10-9 M. These results suggest that TgMab-2, which was developed by CBIS method, is useful for analyzing the function of hTIGIT by flow cytometry.
Collapse
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
41
|
Tanaka T, Nanamiya R, Takei J, Nakamura T, Yanaka M, Hosono H, Sano M, Asano T, Kaneko MK, Kato Y. Development of Anti-Mouse CC Chemokine Receptor 8 Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:65-70. [PMID: 33900818 DOI: 10.1089/mab.2021.0005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CC chemokine receptor 8 (CCR8) belongs to the class A of G protein-coupled receptor. It is highly expressed on Treg and T helper 2 (TH2) cells recruited to the inflammation site and is implicated in allergy and asthma. Recently, CCR8+Treg cells have been suggested to be a master regulator in the immunosuppressive tumor microenvironment; therefore, developing sensitive monoclonal antibodies (mAbs) for CCR8 has been desired. This study established a specific and sensitive mAb for mouse CCR8 (mCCR8), which is useful for flow cytometry by using the Cell-Based Immunization and Screening (CBIS) method. The established anti-mCCR8 mAb, C8Mab-2 (rat IgG2b, kappa), reacted with mCCR8-overexpressed Chinese hamster ovary-K1 (CHO/mCCR8) cells and P388 (mouse lymphoid neoplasma) or J774-1 (mouse macrophage-like) cells, which express endogenous mCCR8 by flow cytometry. C8Mab-2, which was established by the CBIS method, could be useful for elucidating the mCCR8-related biological response by flow cytometry.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Yamada S, Kaneko MK, Sayama Y, Asano T, Sano M, Yanaka M, Nakamura T, Okamoto S, Handa S, Komatsu Y, Nakamura Y, Furusawa Y, Takei J, Kato Y. Development of Novel Mouse Monoclonal Antibodies Against Human CD19. Monoclon Antib Immunodiagn Immunother 2021; 39:45-50. [PMID: 32271687 DOI: 10.1089/mab.2020.0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD19 is a type I transmembrane glycoprotein belonging to the immunoglobulin superfamily. It is expressed in normal and neoplastic B cells, and it modulates the threshold of B cell activation for amplifying B cell receptor signaling. Blinatumomab (a CD3-CD19-bispecific T cell-engaging antibody) and tisagenlecleucel (genetically modified T cells that express a CD19 chimeric antigen receptor [CART-19]) provide significant benefits for patients with CD19-positive relapsed or refractory B cell malignancies. In this study, we first employed the Cell-Based Immunization and Screening (CBIS) method to produce anti-CD19 monoclonal antibodies using CD19-overexpressing cells for both immunization and screening. One established clone-C19Mab-1-proved to be useful in flow cytometry assays against lymphoma cell lines, such as BALL-1, P30/OHK, and Raji. Second, the extracellular domain of CD19 was immunized into mice, and enzyme-linked immunosorbent assays were performed for the first screening. One established clone-C19Mab-3-was determined to be useful for Western blotting and immunohistochemical analysis. Due to their complementary utility, a combination of C19Mab-1 (established using CBIS) and C19Mab-3 (established using conventional method) could be useful for the pathological analysis of CD19.
Collapse
Affiliation(s)
- Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saki Okamoto
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Komatsu
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshimi Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
Establishment of a novel anti-TROP2 monoclonal antibody TrMab-29 for immunohistochemical analysis. Biochem Biophys Rep 2021; 25:100902. [PMID: 33490649 PMCID: PMC7806523 DOI: 10.1016/j.bbrep.2020.100902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/08/2020] [Accepted: 12/27/2020] [Indexed: 12/28/2022] Open
Abstract
TROP2 is a type I transmembrane glycoprotein originally identified in human trophoblast cells that is overexpressed in several types of cancer. To better understand the role of TROP2 in cancer, we herein aimed to develop a sensitive and specific anti-TROP2 monoclonal antibody (mAb) for use in flow cytometry, Western blot, and immunohistochemistry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with N-terminal PA-tagged and C-terminal RAP/MAP-tagged TROP2-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/PA-TROP2-RAP-MAP), and hybridomas showing strong signals from PA-tagged TROP2-overexpressed CHO-K1 cells (CHO/TROP2-PA) and weak-to-no signals from CHO-K1 cells were selected using flow cytometry. We demonstrated using flow cytometry that the established anti-TROP2 mAb, TrMab-29 (mouse IgG1 kappa), detected TROP2 in MCF7 breast cancer cell line as well as CHO/TROP2-PA cells. Western blot analysis showed a 40 kDa band in lysates prepared from both CHO/TROP2-PA and MCF7 cells. Furthermore, TROP2 was strongly detected by immunohistochemical analysis using TrMab-29, indicating that TrMab-29 may be a valuable tool for the detection of TROP2 in cancer.
Collapse
Key Words
- ADC, antibody-drug conjugates
- ADCC, antibody-dependent cellular cytotoxicity
- BSA, bovine serum albumin
- Breast cancer
- CAR-T, chimeric antigen receptor T-cell
- CBIS method
- CBIS, Cell-Based Immunization and Screening
- CDC, complement-dependent cytotoxicity
- CHO, Chinese hamster ovary
- DAB, 3,3′-diaminobenzidine tetrahydrochloride
- Monoclonal antibody
- P3U1, P3X63Ag8U.1
- PBS, phosphate-buffered saline
- PIT, photoimmunotherapy
- PVDF, polyvinylidene difluoride
- RIT, radioimmunotherapy
- TROP2
- TROP2, trophoblast cell-surface antigen
- mAb, monoclonal antibody
Collapse
|
44
|
Sayama Y, Kaneko MK, Kato Y. Development and characterization of TrMab‑6, a novel anti‑TROP2 monoclonal antibody for antigen detection in breast cancer. Mol Med Rep 2020; 23:92. [PMID: 33300065 PMCID: PMC7723163 DOI: 10.3892/mmr.2020.11731] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] Open
Abstract
Trophoblast cell-surface antigen 2 (TROP2) is a type I transmembrane glycoprotein that is overexpressed in a number of cancer types, including triple-negative breast cancer. The current study aimed to develop a highly sensitive and specific monoclonal antibody (mAb) targeting TROP2, which could be used to evaluate TROP2 expression using flow cytometry, western blot analysis and immunohistochemistry by employing the Cell-Based Immunization and Screening (CBIS) method. The established anti-TROP2 mAb, TrMab-6 (mouse IgG2b, κ), detected TROP2 on PA-tagged TROP2-overexpressing Chinese hamster ovary-K1 (CHO/TROP2-PA) and breast cancer cell lines, including MCF7 and BT-474 using flow cytometry. Western blot analysis indicated a 40 kDa band in lysates prepared from CHO/TROP2-PA, MCF7 and BT-474 cells. Furthermore, TROP2 in 57/61 (93.4%) of the breast cancer specimens was strongly detected using immunohistochemical analysis with TrMab-6. In conclusion, the current study demonstrated that TrMab-6 may be a valuable tool for the detection of TROP2 in a wide variety of breast cancer types.
Collapse
Affiliation(s)
- Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
45
|
Takei J, Kaneko MK, Ohishi T, Hosono H, Nakamura T, Yanaka M, Sano M, Asano T, Sayama Y, Kawada M, Harada H, Kato Y. A defucosylated anti‑CD44 monoclonal antibody 5‑mG2a‑f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Oncol Rep 2020; 44:1949-1960. [PMID: 33000243 PMCID: PMC7550977 DOI: 10.3892/or.2020.7735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
CD44 is widely expressed on the surface of most tissues and all hematopoietic cells, and regulates many genes associated with cell adhesion, migration, proliferation, differentiation, and survival. CD44 has also been studied as a therapeutic target in several cancers. Previously, an anti-CD44 monoclonal antibody (mAb), C44Mab-5 (IgG1, kappa) was established by immunizing mice with CD44-overexpressing Chinese hamster ovary (CHO)-K1 cells. C44Mab-5 recognized all CD44 isoforms, and showed high sensitivity for flow cytometry and immunohistochemical analysis in oral cancers. However, as the IgG1 subclass of C44Mab-5 lacks antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), the antitumor activity of C44Mab-5 could not be determined. In the present study, we converted the mouse IgG1 subclass antibody C44Mab-5 into an IgG2a subclass antibody, 5-mG2a, and further produced a defucosylated version, 5-mG2a-f, using FUT8-deficient ExpiCHO-S (BINDS-09) cells. Defucosylation of 5-mG2a-f was confirmed using fucose-binding lectins, such as AAL and PhoSL. The dissociation constants (KD) for 5-mG2a-f against SAS and HSC-2 oral cancer cells were determined through flow cytometry to be 2.8×10−10 M and 2.6×10−9 M, respectively, indicating that 5-mG2a-f possesses extremely high binding affinity. Furthermore, immunohistochemical staining using 5-mG2a-f specifically stained the membranes of oral cancer cells. In vitro analysis demonstrated that 5-mG2a-f showed moderate ADCC and CDC activities against SAS and HSC-2 oral cancer cells. In vivo analysis revealed that 5-mG2a-f significantly reduced tumor development in SAS and HSC-2 ×enografts in comparison to control mouse IgG, even after injection seven days post-tumor inoculation. Collectively, these results suggest that treatment with 5-mG2a-f may represent a useful therapy for patients with CD44-expressing oral cancers.
Collapse
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8510, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
46
|
Furusawa Y, Kaneko MK, Kato Y. Establishment of an Anti-CD20 Monoclonal Antibody (C20Mab-60) for Immunohistochemical Analyses. Monoclon Antib Immunodiagn Immunother 2020; 39:112-116. [DOI: 10.1089/mab.2020.0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
47
|
Kaneko MK, Sano M, Takei J, Asano T, Sayama Y, Hosono H, Kobayashi A, Konnai S, Kato Y. Development and Characterization of Anti-Sheep Podoplanin Monoclonal Antibodies PMab-253 and PMab-260. Monoclon Antib Immunodiagn Immunother 2020; 39:144-155. [PMID: 32679010 DOI: 10.1089/mab.2020.0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Anti-podoplanin (PDPN) monoclonal antibodies (mAbs) are needed as markers for lymphatic endothelial cells or type I alveolar cells in immunohistochemical analyses. We have developed anti-PDPN mAbs for many species, including humans, mice, rats, rabbits, dogs, cats, bovines, pigs, Tasmanian devils, alpacas, tigers, whales, goats, horses, and bears. This study develops and characterizes anti-sheep PDPN (sPDPN) mAbs using Cell-Based Immunization and Screening (CBIS) method. A RAP14 tag was added to the N-terminus of sPDPN, and an anti-RAP14 tag mAb (PMab-2) was used to measure the expression level of sPDPN in flow cytometry and Western blots. We immunized mice with sPDPN-overexpressing Chinese hamster ovary (CHO)-K1 (CHO/sPDPN) cells and screened mAbs against sPDPN using flow cytometry. Two of the mAbs, PMab-253 (immunoglobulin M [IgM], kappa) and PMab-260 (IgM, kappa), detected CHO/sPDPN cells specifically using flow cytometry and Western blots. Both PMab-253 and PMab-260 stained the renal glomerulus and Bowman's capsule, lymphatic endothelial cells of the lung and colon, and type I alveolar cells of the lung, suggesting PMab-253 and PMab-260, which were developed by CBIS method, can be applied to functional analyses of sPDPN. We also determined the binding epitope of PMab-253 and PMab-260 using flow cytometry. Analysis of sPDPN deletion mutants revealed that the N-terminus of the PMab-253 and PMab-260 epitope exists between amino acids 110 and 115 of sPDPN. Analysis of sPDPN point mutations revealed that the critical epitope of PMab-253 and PMab-260 includes Thr112 and Ser113 of sPDPN, indicating that the PMab-253 and PMab-260 epitope are independent of the platelet aggregation-stimulating (PLAG) domain or the PLAG-like domain of sPDPN.
Collapse
Affiliation(s)
- Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
48
|
Furusawa Y, Kaneko MK, Kato Y. Establishment of C 20Mab-11, a novel anti-CD20 monoclonal antibody, for the detection of B cells. Oncol Lett 2020; 20:1961-1967. [PMID: 32724441 PMCID: PMC7377059 DOI: 10.3892/ol.2020.11753] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
CD20 is one of several B-lymphocyte antigens that has been shown to be an effective target for the detection and treatment of B-cell lymphomas. Sensitive and specific monoclonal antibodies (mAbs) are required for every application used for the diagnosis of B-cell lymphoma. Although many anti-CD20 mAbs have been established, the types of applications, those anti-CD20 can be used in, are limited. In this study, we aimed to establish novel anti-CD20 mAbs to be used for broad applications, such as flow cytometry, western blot, and immunohistochemical analyses, using the Cell-Based Immunization and Screening (CBIS) method. One of the established mAbs, C20Mab-11 (IgM, kappa), detected overexpression of CD20 in CHO-K1 or LN229 cell lines, indicating that C20Mab-11 is specific for CD20. In western blot analyses, C20Mab-11 detected not only overexpression of CD20 in CHO-K1 or LN229 cell lines, but also CD20 of BALL-1 and Raji cells with both sensitivity and specificity. Furthermore, C20Mab-11 strongly stained B cells of the lymph follicle and B cell lymphomas in immunohistochemical analyses. These results indicate that C20Mab-11 develped by CBIS method, is useful for the detection of CD20 in lymphoma tissues by flow cytometry, western blot, and immunohistochemical analyses and potentially could be beneficial for the treatment of B cell lymphomas.
Collapse
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Mika Kato Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
49
|
Kato Y, Furusawa Y, Sano M, Takei J, Nakamura T, Yanaka M, Okamoto S, Handa S, Komatsu Y, Asano T, Sayama Y, Kaneko MK. Development of an Anti-Sheep Podoplanin Monoclonal Antibody PMab-256 for Immunohistochemical Analysis of Lymphatic Endothelial Cells. Monoclon Antib Immunodiagn Immunother 2020; 39:82-90. [DOI: 10.1089/mab.2020.0005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saki Okamoto
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Komatsu
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
50
|
Kato Y, Sano M, Asano T, Sayama Y, Kaneko MK. Thr80 of Sheep Podoplanin Is a Critical Epitope of the Antisheep Podoplanin Monoclonal Antibody: PMab-256. Monoclon Antib Immunodiagn Immunother 2020; 39:95-100. [PMID: 32423295 DOI: 10.1089/mab.2020.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An antisheep podoplanin (sPDPN) monoclonal antibody (mAb), PMab-256, has recently been established. PMab-256 shows positive immunostaining for lymphatic endothelial cells, lung type I alveolar cells, and kidney podocytes. PDPN possesses three platelet-aggregation-stimulating (PLAG) domains, PLAG1, PLAG2, and PLAG3, and a PLAG-like domain (PLD). The binding epitope of many anti-PDPN mAbs is located in PLAG domains or PLD. The purpose of this study is to determine the binding epitope of PMab-256. Analysis of sPDPN deletion mutants revealed that the N-terminus of the PMab-256 epitope exists between amino acids 75 and 80 of sPDPN. Furthermore, analysis of sPDPN point mutations demonstrated that the critical epitope includes Thr80 of sPDPN, indicating that the PMab-256 epitope is in the PLD of sPDPN.
Collapse
Affiliation(s)
- Yukinari Kato
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|