1
|
Yamada M, Warabi E, Oishi H, Lira VA, Okutsu M. Muscle-derived IL-1β regulates EcSOD expression via the NBR1-p62-Nrf2 pathway in muscle during cancer cachexia. J Physiol 2024; 602:4215-4235. [PMID: 39167700 DOI: 10.1113/jp286460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative stress contributes to the loss of skeletal muscle mass and function in cancer cachexia. However, this outcome may be mitigated by an improved endogenous antioxidant defence system. Here, using the well-established oxidative stress-inducing muscle atrophy model of Lewis lung carcinoma (LLC) in 13-week-old male C57BL/6J mice, we demonstrate that extracellular superoxide dismutase (EcSOD) levels increase in the cachexia-prone extensor digitorum longus muscle. LLC transplantation significantly increased interleukin-1β (IL-1β) expression and release from extensor digitorum longus muscle fibres. Moreover, IL-1β treatment of C2C12 myotubes increased NBR1, p62 phosphorylation at Ser351, Nrf2 nuclear translocation and EcSOD protein expression. Additional studies in vivo indicated that intramuscular IL-1β injection is sufficient to stimulate EcSOD expression, which is prevented by muscle-specific knockout of p62 and Nrf2 (i.e. in p62 skmKO and Nrf2 skmKO mice, respectively). Finally, since an increase in circulating IL-1β may lead to unwanted outcomes, we demonstrate that targeting this pathway at p62 is sufficient to drive muscle EcSOD expression in an Nrf2-dependent manner. In summary, cancer cachexia increases EcSOD expression in extensor digitorum longus muscle via muscle-derived IL-1β-induced upregulation of p62 phosphorylation and Nrf2 activation. These findings provide further mechanistic evidence for the therapeutic potential of p62 and Nrf2 to mitigate cancer cachexia-induced muscle atrophy. KEY POINTS: Oxidative stress plays an important role in muscle atrophy during cancer cachexia. EcSOD, which mitigates muscle loss during oxidative stress, is upregulated in 13-week-old male C57BL/6J mice of extensor digitorum longus muscles during cancer cachexia. Using mouse and cellular models, we demonstrate that cancer cachexia promotes muscle EcSOD protein expression via muscle-derived IL-1β-dependent stimulation of the NBR1-p62-Nrf2 signalling pathway. These results provide further evidence for the potential therapeutic targeting of the NBR1-p62-Nrf2 signalling pathway downstream of IL-1β to mitigate cancer cachexia-induced muscle atrophy.
Collapse
Affiliation(s)
- Mami Yamada
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| | - Eiji Warabi
- Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Vitor A Lira
- Department of Health & Human Physiology, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Obesity Research and Education Initiative, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA
| | - Mitsuharu Okutsu
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| |
Collapse
|
2
|
Yamada M, Okutsu M. Interleukin-1β triggers muscle-derived extracellular superoxide dismutase expression and protects muscles from doxorubicin-induced atrophy. J Physiol 2023; 601:4699-4721. [PMID: 37815420 DOI: 10.1113/jp285174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
Doxorubicin, a conventional chemotherapeutic agent prescribed for cancer, causes skeletal muscle atrophy and adversely affects mobility and strength. Given that doxorubicin-induced muscle atrophy is attributable primarily to oxidative stress, its effects could be mitigated by antioxidant-focused therapies; however, these protective therapeutic targets remain ambiguous. The aim of this study was to demonstrate that doxorubicin triggers severe muscle atrophy via upregulation of oxidative stress (4-hydroxynonenal and malondialdehyde) and atrogenes (atrogin-1/MAFbx and muscle RING finger-1) in association with decreased expression of the antioxidant enzyme extracellular superoxide dismutase (EcSOD), in cultured C2C12 myotubes and mouse skeletal muscle. Supplementation with EcSOD recombinant protein elevated EcSOD levels on the cellular membrane of cultured myotubes, consequently inhibiting doxorubicin-induced oxidative stress and myotube atrophy. Furthermore, doxorubicin treatment reduced interleukin-1β (IL-1β) mRNA expression in cultured myotubes and skeletal muscle, whereas transient IL-1β treatment increased EcSOD protein expression on the myotube membrane. Notably, transient IL-1β treatment of cultured myotubes and local administration in mouse skeletal muscle attenuated doxorubicin-induced muscle atrophy, which was associated with increased EcSOD expression. Collectively, these findings reveal that the regulation of skeletal muscle EcSOD via maintenance of IL-1β signalling is a potential therapeutic approach to counteract the muscle atrophy mediated by doxorubicin and oxidative stress. KEY POINTS: Doxorubicin, a commonly prescribed chemotherapeutic agent for patients with cancer, induces severe muscle atrophy owing to increased expression of oxidative stress; however, protective therapeutic targets are poorly understood. Doxorubicin induced muscle atrophy owing to increased expression of oxidative stress and atrogenes in association with decreased protein expression of extracellular superoxide dismutase (EcSOD) in cultured C2C12 myotubes and mouse skeletal muscle. Supplementation with EcSOD recombinant protein increased EcSOD levels on the cellular membrane of cultured myotubes, resulting in inhibition of doxorubicin-induced oxidative stress and myotube atrophy. Doxorubicin treatment decreased interleukin-1β (IL-1β) expression in cultured myotubes and skeletal muscle, whereas transient IL-1β treatment in vivo and in vitro increased EcSOD protein expression and attenuated doxorubicin-induced muscle atrophy. These findings reveal that regulation of skeletal muscle EcSOD via maintenance of IL-1β signalling is a possible therapeutic approach for muscle atrophy mediated by doxorubicin and oxidative stress.
Collapse
Affiliation(s)
- Mami Yamada
- Graduate School of Science, Nagoya City University, Nagoya Aichi, Japan
| | - Mitsuharu Okutsu
- Graduate School of Science, Nagoya City University, Nagoya Aichi, Japan
| |
Collapse
|
3
|
Leslie E, Gibson AL, Gonzalez Bosc LV, Mermier C, Wilson SM, Deyhle MR. Can Maternal Exercise Prevent High-Altitude Pulmonary Hypertension in Children? High Alt Med Biol 2023; 24:1-6. [PMID: 36695730 DOI: 10.1089/ham.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Leslie, Eric, Ann L. Gibson, Laura V. Gonzalez Bosc, Christine Mermier, Sean M. Wilson, and Michael R. Deyhle. Review: can maternal exercise prevent high-altitude pulmonary hypertension in children? High Alt Med Biol. 24:1-6, 2023.-Chronic high-altitude exposure reduces oxygen delivery to the fetus during pregnancy and causes pathologic pulmonary artery remodeling, This increases the risk of high-altitude pulmonary hypertension (PH), which is a particularly fatal disease that is difficult to treat. Therefore, finding ways to prevent high-altitude PH, including during the neonatal period, is preferable. Cardiorespiratory exercise can improve functional capacity and quality of life in patients with high-altitude PH. However, similar to other treatments and surgical procedures, the benefits are not enough to cure the disease after a diagnosis. Cardiorespiratory exercise by mothers during pregnancy (i.e., maternal exercise) has not been previously evaluated to prevent the development of high-altitude PH in children born and living at high altitude. This focused review describes the pathophysiology of high-altitude PH and the potential benefit of maternal exercise for preventing the disease caused by high-altitude pregnancies.
Collapse
Affiliation(s)
- Eric Leslie
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ann L Gibson
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Christine Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Wang X, Wang Z, Tang D. Aerobic exercise improves LPS-induced sepsis via regulating the Warburg effect in mice. Sci Rep 2021; 11:17772. [PMID: 34493741 PMCID: PMC8423727 DOI: 10.1038/s41598-021-97101-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/12/2021] [Indexed: 01/24/2023] Open
Abstract
We investigated the impact of aerobic exercise (AE) on multiple organ dysfunction syndrome (MODS), aortic injury, pathoglycemia, and death during sepsis. ICR mice were randomized into four groups: Control (Con), Lipopolysaccharide (LPS), Exercise (Ex), and Exercise + LPS (Ex + LPS) groups. Mice were trained with low-intensity for 4 weeks. LPS and Ex + LPS mice received 5 mg/kg LPS intraperitoneally for induction of sepsis. Histopathological micrographs showed the organ morphology and damage. This study examined the effects of AE on LPS-induced changes in systemic inflammation, pulmonary inflammation, lung permeability, and bronchoalveolar lavage fluid (BALF) cell count, oxidative stress-related indicators in the lung, blood glucose levels, plasma lactate levels, serum insulin levels, plasma high-mobility group box 1 (HMGB1) levels, glucose transporter 1 (Glut1) and HMGB1, silent information regulator 1 (Sirt-1), and nuclear factor erythroid 2-related factor 2 (Nrf-2) mRNA expression levels in lung tissue. AE improved sepsis-associated multiple organ dysfunction syndrome (MODS), aortic injury, hypoglycemia, and death. AE prominently decreased pulmonary inflammation, pulmonary edema, and modulated redox balance during sepsis. AE prominently decreased neutrophil content in organ. AE prominently downregulated CXCL-1, CXCL-8, IL-6, TNF-α, Glu1, and HMGB1 mRNA expression but activated IL-1RN, IL-10, Sirt-1, and Nrf-2 mRNA expression in the lung during sepsis. AE decreased the serum levels of lactate and HMGB1 but increased blood glucose levels and serum insulin levels during sepsis. A 4-week AE improves sepsis-associated MODS, aortic injury, pathoglycemia, and death. AE impairs LPS-induced lactate and HMGB1 release partly because AE increases serum insulin levels and decreases the levels of Glut1. AE is a novel therapeutic strategy for sepsis targeting aerobic glycolysis.
Collapse
Affiliation(s)
- Xishuai Wang
- Department of College of P.E and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing, 100875, People's Republic of China. .,Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Zhiqing Wang
- Department of College of P.E and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing, 100875, People's Republic of China
| | - Donghui Tang
- Department of College of P.E and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing, 100875, People's Republic of China.
| |
Collapse
|
5
|
Yamada M, Iwata M, Warabi E, Oishi H, Lira VA, Okutsu M. p62/SQSTM1 and Nrf2 are essential for exercise‐mediated enhancement of antioxidant protein expression in oxidative muscle. FASEB J 2019; 33:8022-8032. [DOI: 10.1096/fj.201900133r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mami Yamada
- Graduate School of Natural SciencesNagoya City University Nagoya Japan
| | - Masahiro Iwata
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi University Handa Japan
| | - Eiji Warabi
- Faculty of MedicineUniversity of Tsukuba Tsukuba Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental MedicineGraduate School of Medical SciencesNagoya City University Nagoya Japan
| | - Vitor A. Lira
- Department of Health and Human PhysiologyObesity Research and Education InitiativeFraternal Order of Eagles (F.O.E.) Diabetes Research CenterAbboud Cardiovascular Research CenterPappajohn Biomedical InstituteThe University of Iowa Iowa City Iowa USA
| | - Mitsuharu Okutsu
- Graduate School of Natural SciencesNagoya City University Nagoya Japan
| |
Collapse
|
6
|
Kim D, Kang H. Exercise training modifies gut microbiota with attenuated host responses to sepsis in wild-type mice. FASEB J 2019; 33:5772-5781. [PMID: 30702933 DOI: 10.1096/fj.201802481r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigated the effects of exercise preconditioning-induced modification in gut microbiota composition and host responses to cecal ligation and puncture (CLP)-induced sepsis. Four-week-old C57BL/6N male mice were randomly assigned to either CLP ( n = 30) or CLP-exercise (CLP+Exe; n = 30) groups. Prior to CLP-induced sepsis, the CLP+Exe mice were subjected to 8 wk of treadmill running. Fecal samples were collected and analyzed by 16S rRNA amplification sequencing to assess gut microbiota composition. Diversity analyses such as principal coordinates analysis and rarefaction curves showed that exercise preconditioning was associated with differences in gut microbiota community structure and species richness. Exercise preconditioning-induced differences in gut microbiota composition were also evident at the family level of taxonomic analysis, with the dominant phyla being Bacteriodetes, Firmicutes, Verrucomicrobia, and, to a lesser extent, Cyanobacteria. Compared with control mice, preconditioned mice had a higher survival rate and less organ damage during the acute phase of sepsis, secondary to attenuation of the host response to septic shock. The current findings suggest that exercise preconditioning-induced modification in gut microbiota composition may lead to an attenuated host response to CLP-induced sepsis in wild-type mice, as shown by increased survival and less organ damage, as well as the establishment of a balance between pro- and anti-inflammatory responses.-Kim, D., Kang, H. Exercise training modifies gut microbiota with attenuated host responses to sepsis in wild-type mice.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Sport Science, Sungkyunkwan University, Suwon, South Korea
| | - Hyunsik Kang
- College of Sport Science, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|