1
|
Seneff S, Kyriakopoulos AM, Nigh G. Is autism a PIN1 deficiency syndrome? A proposed etiological role for glyphosate. J Neurochem 2024; 168:2124-2146. [PMID: 38808598 DOI: 10.1111/jnc.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Greg Nigh
- Immersion Health, Portland, Oregon, USA
| |
Collapse
|
2
|
Sun X, Kong J, Dong S, Kato H, Sato H, Hirofuji Y, Ito Y, Wang L, Kato TA, Torio M, Sakai Y, Ohga S, Fukumoto S, Masuda K. TRPV4-mediated Ca 2+ deregulation causes mitochondrial dysfunction via the AKT/α-synuclein pathway in dopaminergic neurons. FASEB Bioadv 2023; 5:507-520. [PMID: 38094157 PMCID: PMC10714070 DOI: 10.1096/fba.2023-00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 06/30/2024] Open
Abstract
Mutations in the gene encoding the transient receptor potential vanilloid member 4 (TRPV4), a Ca2+ permeable nonselective cation channel, cause TRPV4-related disorders. TRPV4 is widely expressed in the brain; however, the pathogenesis underlying TRPV4-mediated Ca2+ deregulation in neurodevelopment remains unresolved and an effective therapeutic strategy remains to be established. These issues were addressed by isolating mutant dental pulp stem cells from a tooth donated by a child diagnosed with metatropic dysplasia with neurodevelopmental comorbidities caused by a gain-of-function TRPV4 mutation, c.1855C > T (p.L619F). The mutation was repaired using CRISPR/Cas9 to generate corrected isogenic stem cells. These stem cells were differentiated into dopaminergic neurons and the pharmacological effects of folic acid were examined. In mutant neurons, constitutively elevated cytosolic Ca2+ augmented AKT-mediated α-synuclein (α-syn) induction, resulting in mitochondrial Ca2+ accumulation and dysfunction. The TRPV4 antagonist, AKT inhibitor, or α-syn knockdown, normalizes the mitochondrial Ca2+ levels in mutant neurons, suggesting the importance of mutant TRPV4/Ca2+/AKT-induced α-syn in mitochondrial Ca2+ accumulation. Folic acid was effective in normalizing mitochondrial Ca2+ levels via the transcriptional repression of α-syn and improving mitochondrial reactive oxygen species levels, adenosine triphosphate synthesis, and neurite outgrowth of mutant neurons. This study provides new insights into the neuropathological mechanisms underlying TRPV4-related disorders and related therapeutic strategies.
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
- Present address:
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
- Present address:
Department of Pediatric DentistryCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
| | - Jun Kong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Shuangshan Dong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral AnatomyKyushu University Graduate School of Dental ScienceFukuokaJapan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Yosuke Ito
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Lu Wang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Michiko Torio
- Department of General Pediatrics, Fukuoka Children's HospitalFukuokaJapan
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
3
|
Mitochondrial Calcium-Triggered Oxidative Stress and Developmental Defects in Dopaminergic Neurons Differentiated from Deciduous Teeth-Derived Dental Pulp Stem Cells with MFF Insufficiency. Antioxidants (Basel) 2022; 11:antiox11071361. [PMID: 35883852 PMCID: PMC9311869 DOI: 10.3390/antiox11071361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial fission factor (MFF) is an adapter that targets dynamin-related protein 1 from the cytosol to the mitochondria for fission. Loss-of-function MFF mutations cause encephalopathy due to defective mitochondrial and peroxisomal fission 2 (EMPF2). To elucidate the molecular mechanisms that were involved, we analyzed the functional effects of MFF depletion in deciduous teeth-derived dental pulp stem cells differentiating into dopaminergic neurons (DNs). When treated with MFF-targeting small interfering RNA, DNs showed impaired neurite outgrowth and reduced mitochondrial signals in neurites harboring elongated mitochondria. MFF silencing also caused mitochondrial Ca2+ accumulation through accelerated Ca2+ influx from the endoplasmic reticulum (ER) via the inositol 1,4,5-trisphosphate receptor. Mitochondrial Ca2+ overload led DNs to produce excessive reactive oxygen species (ROS), and downregulated peroxisome proliferator-activated receptor-gamma co-activator-1 alpha (PGC-1α). MFF was co-immunoprecipitated with voltage-dependent anion channel 1, an essential component of the ER-mitochondrial Ca2+ transport system. Folic acid supplementation normalized ROS levels, PGC-1α mediated mitochondrial biogenesis, and neurite outgrowth in MFF depleted DNs, without affecting their mitochondrial morphology or Ca2+ levels. We propose that MFF negatively regulates the mitochondrial Ca2+ influx from the ER. MFF-insufficiency recapitulated the EMPF2 neuropathology with increased oxidative stress and suppressed mitochondrial biogenesis. ROS and mitochondrial biogenesis might be potential therapeutic targets for EMPF2.
Collapse
|