1
|
Shi Y, Gao M, Xing L, Zhu G, Wang H, Meng X. RyhB Regulates Capsular Synthesis for Serum Resistance and Virulence of Avian Pathogenic Escherichia coli. Int J Mol Sci 2025; 26:3062. [PMID: 40243847 PMCID: PMC11988350 DOI: 10.3390/ijms26073062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes bloodstream infections mainly by resisting the bactericidal action of host serum. Although various protein and polysaccharide factors involved in serum resistance have been identified, the role of small non-coding RNA (sRNA) in serum resistance has rarely been studied. The sRNA RyhB contributes to serum resistance in APEC, but the regulation mechanism of RyhB to serum resistance-related targets remains unknown. Here, we studied the regulatory mechanism of RyhB on capsule synthesis and how RyhB regulates serum resistance, macrophage phagocytosis resistance, and pathogenicity to natural hosts by regulating capsule synthesis. The results showed that RyhB upregulates capsular synthesis by interacting with the promoter regions of the capsule gene cluster and activating the translation of the capsule. The deletion of ryhB and/or neu reduced the ability of resistance to serum, macrophage phagocytosis, and pathogenicity of APEC in ducks. It can be concluded that RyhB directly upregulates the expression of capsular gene cluster and capsular synthesis and then indirectly promotes resistance to serum and macrophage phagocytosis and pathogenicity to ducks.
Collapse
Affiliation(s)
- Yuxing Shi
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Mingjuan Gao
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Lin Xing
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Heng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Xia Meng
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| |
Collapse
|
2
|
Eschbach SH, Hien EDM, Ghosh T, Lamontagne AM, Lafontaine DA. The Escherichia coli ribB riboswitch senses flavin mononucleotide within a defined transcriptional window. RNA (NEW YORK, N.Y.) 2024; 30:1660-1673. [PMID: 39366707 PMCID: PMC11571811 DOI: 10.1261/rna.080074.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context. Here, we study the ligand-dependent cotranscriptional folding of the FMN-sensing ribB riboswitch of Escherichia coli Using RNase H assays to study nascent ribB riboswitch transcripts, DNA probes targeting the P1 and sequestering stems indicate that FMN binding leads to the protection of these regions from RNase H cleavage, consistent with the riboswitch inhibiting translation initiation when bound to FMN. Our results show that ligand sensing is strongly affected by the position of elongating RNA polymerase, which is defining an FMN-binding transcriptional window that is bordered in its 3' extremity by a transcriptional pause site. Also, using successively overlapping DNA probes targeting a subdomain of the riboswitch, our data suggest the presence of a previously unsuspected helical region involving the 3' strand of the P1 stem. Our results show that this helical region is conserved across bacterial species, thus suggesting that this predicted structure, the anti*-P1 stem, is involved in the FMN-free conformation of the ribB riboswitch. Overall, our study further demonstrates that intricate folding strategies may be used by riboswitches to perform metabolite sensing during the transcriptional process.
Collapse
Affiliation(s)
- Sébastien H Eschbach
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Elsa D M Hien
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Tithi Ghosh
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Anne-Marie Lamontagne
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| |
Collapse
|
3
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
4
|
García-Tomsig NI, Guedes-García SK, Jiménez-Zurdo JI. A Workflow for the Functional Characterization of Noncoding RNAs in Legume Symbiotic Bacteria. Methods Mol Biol 2024; 2751:179-203. [PMID: 38265717 DOI: 10.1007/978-1-0716-3617-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Computational comparative genomics and, later, high-throughput transcriptome profiling (RNAseq) have uncovered a plethora of small noncoding RNA species (sRNAs) with potential regulatory roles in bacteria. A large fraction of sRNAs are differentially regulated in response to different biotic and abiotic stimuli and have the ability to fine-tune posttranscriptional reprogramming of gene expression through protein-assisted antisense interactions with trans-encoded target mRNAs. However, this level of gene regulation is still understudied in most non-model bacteria. Here, we compile experimental methods to detect expression, determine 5'/3'-ends, assess transcriptional regulation, generate mutants, and validate candidate target mRNAs of trans-acting sRNAs (trans-sRNAs) identified in the nitrogen-fixing α-rhizobium Sinorhizobium meliloti. The workflow, molecular tools, and methods are suited to investigate the function of newly identified base-pairing trans-sRNAs in phylogenetically related α-rhizobia.
Collapse
Affiliation(s)
- Natalia I García-Tomsig
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sabina K Guedes-García
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José I Jiménez-Zurdo
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
| |
Collapse
|
5
|
Börner J, Friedrich T, Klug G. RNase III participates in control of quorum sensing, pigmentation and oxidative stress resistance in Rhodobacter sphaeroides. Mol Microbiol 2023; 120:874-892. [PMID: 37823424 DOI: 10.1111/mmi.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
RNase III is a dsRNA-specific endoribonuclease, highly conserved in bacteria and eukarya. In this study, we analysed the effects of inactivation of RNase III on the transcriptome and the phenotype of the facultative phototrophic α-proteobacterium Rhodobacter sphaeroides. RNA-seq revealed an unexpectedly high amount of genes with increased expression located directly downstream to the rRNA operons. Chromosomal insertion of additional transcription terminators restored wild type-like expression of the downstream genes, indicating that RNase III may modulate the rRNA transcription termination in R. sphaeroides. Furthermore, we identified RNase III as a major regulator of quorum-sensing autoinducer synthesis in R. sphaeroides. It negatively controls the expression of the autoinducer synthase CerI by reducing cerI mRNA stability. In addition, RNase III inactivation caused altered resistance against oxidative stress and impaired formation of photosynthetically active pigment-protein complexes. We also observed an increase in the CcsR small RNAs that were previously shown to promote resistance to oxidative stress. Taken together, our data present interesting insights into RNase III-mediated regulation and expand the knowledge on the function of this important enzyme in bacteria.
Collapse
Affiliation(s)
- Janek Börner
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|