1
|
Polymer/Enzyme Composite Materials—Versatile Catalysts with Multiple Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A significant interest was granted lately to enzymes, which are versatile catalysts characterized by natural origin, with high specificity and selectivity for particular substrates. Additionally, some enzymes are involved in the production of high-valuable products, such as antibiotics, while others are known for their ability to transform emerging contaminates, such as dyes and pesticides, to simpler molecules with a lower environmental impact. Nevertheless, the use of enzymes in industrial applications is limited by their reduced stability in extreme conditions and by their difficult recovery and reusability. Rationally, enzyme immobilization on organic or inorganic matrices proved to be one of the most successful innovative approaches to increase the stability of enzymatic catalysts. By the immobilization of enzymes on support materials, composite biocatalysts are obtained that pose an improved stability, preserving the enzymatic activity and some of the support material’s properties. Of high interest are the polymer/enzyme composites, which are obtained by the chemical or physical attachment of enzymes on polymer matrices. This review highlights some of the latest findings in the field of polymer/enzyme composites, classified according to the morphology of the resulting materials, following their most important applications.
Collapse
|
2
|
Remonatto D, Fantatto RR, Pietro RCLR, Monti R, Oliveira JV, de Paula AV, Bassan JC. Enzymatic synthesis of geranyl acetate in batch and fed-batch reactors and evaluation of its larvicidal activity against Rhipicephalus (Boophilus) microplus. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Crit Rev Food Sci Nutr 2022; 63:10047-10078. [PMID: 35531939 DOI: 10.1080/10408398.2022.2068124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enantiomeric pure and natural (+)-Lactones (C ≤ 14) with aromas obtained from fruits and milk are considered flavoring compounds. The flavoring value is related to the lactones' ring size and chain length, which blend in varying concentrations to produce different stone-fruit flavors. The nature-identical and enantiomeric pure (+)-lactones are only produced through whole-cell biotransformation of yeast. The industrially important γ-decalactone and δ-decalactone are produced by a four-step aerobic-oxidation of ricinoleic acid (RA) following the lactonization mechanism. Recently, metabolic engineering strategies have opened up new possibilities for increasing productivity. Another strategy for increasing yield is to immobilize the RA and remove lactones from the broth regularly. Besides flavor impact, γ-, δ-, ε-, ω-lactones of the carbon chain (C8-C12), the macro-lactones and their derivatives are vital in pharmaceuticals and healthcare. These analogues are isolated from natural sources or commercially produced via biotransformation and chemical synthesis processes for medicinal use or as active pharmaceutical ingredients. The various approaches to biotransformation have been discussed in this review to generate more prospects from a commercial point of view. Finally, this work will be regarded as a magical brick capable of containing both traditional and genetic engineering technology while contributing to a wide range of commercial applications.
Collapse
Affiliation(s)
- Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Cordeiro EDS, Henriques RO, Deucher EM, de Oliveira D, Lerin LA, Furigo A. Optimization, kinetic, and scaling-up of solvent-free lipase-catalyzed synthesis of ethylene glycol oleate emollient ester. Biotechnol Appl Biochem 2020; 68:1469-1478. [PMID: 33135247 DOI: 10.1002/bab.2067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022]
Abstract
The use of enzymatic catalysts is an alternative to chemical catalysts as they can help to obtain products with less environmental impact, considered sustainable within the concept of green chemistry. The optimization, kinetic, lipase reuse, and scale-up of enzymatic production of ethylene glycol oleate in the batch mode were carried out using the NS 88011 lipase in a solvent-free system. For the optimization step, a 23 Central Composite Design was used and the optimized condition for the ethylene glycol oleate production, with conversions above 99%, was at 70 °C, 600 rpm, substrates molar ratio of 1:2, 1 wt% of NS 88011 in 32 H of reaction. Kinetic tests were also carried out with different amounts of enzyme, and it showed that by decreasing the amount of the enzyme, the conversion also decreases. The lipase reuse showed good conversions until the second cycle of use, after which it had a progressive reduction reaching 83% in the fourth cycle of use. The scale-up (ninefold increase) showed promising results, with conversion above 99%, achieving conversions similar to small-scale reactions. Therefore, this work proposed an environmentally safe route to produce an emollient ester using a low-cost biocatalyst in a solvent-free system.
Collapse
Affiliation(s)
- Eloise de Sousa Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Eduardo Monteiro Deucher
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Agenor Furigo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| |
Collapse
|
5
|
Moentamaria D, Dewajani H, Chumaidi A, Nurmahdi H, Sinduwati C. Heterogeneous biocatalyst: Polyurethane foam coating technique with co-immobilized lipase for bio-flavor production. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/732/1/012003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Kaul S, Singh V, Sandhir R, Singhal NK. Organophosphonate functionalized Au/Si@Fe3O4: Versatile carrier for enzyme immobilization. Methods Enzymol 2020; 630:199-214. [DOI: 10.1016/bs.mie.2019.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Lipase-Catalyzed Esterification of Geraniol and Citronellol for the Synthesis of Terpenic Esters. Appl Biochem Biotechnol 2019; 190:574-583. [PMID: 31396887 DOI: 10.1007/s12010-019-03102-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
This article describes the synthesis of terpenic esters derived from geraniol and citronellol (geranyl and citronellyl alkanoates) through esterification reactions catalyzed by the immobilized lipases from Thermomyces lanuginosus (Lipozyme TL IM®) and Candida antarctica (Novozym 435®). Geraniol was esterified with oleic, lauric, and stearic acids; and citronellol was esterified with oleic and stearic acids. For all the synthesized flavor esters, the best conditions were 35 °C, and the molar ratio between acid and alcohol was 1:1. Geranyl and citronellyl alkanoates reached yields between 80-100% within 4 h of reaction. For the synthesis of the citronellyl and geranyl oleate, higher yields were obtained in the absence of organic solvents. For the esters from lauric and stearic acids, using solvent was indispensable to improve the miscibility between the substrates. The reuse of Novozym 435® and Lipozyme TL IM® was performed for two more cycles after the first use, with yields higher than 60%. The results demonstrated the efficiency of the reaction catalyzed by these two commercial enzymes and the feasibility of the methodology for the production of synthetic flavor esters through enzymatic catalysis. The flavor esters synthesized were not described in the literature up to the date, giving this research an innovative feature.
Collapse
|
8
|
Bhavsar KV, Yadav GD. Synthesis of geranyl acetate by transesterification of geraniol with ethyl acetate over
Candida antarctica
lipase as catalyst in solvent‐free system. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kalpesh V. Bhavsar
- Department of Chemical Engineering Institute of Chemical Technology Nathalal Parekh Marg Matunga, Mumbai India
| | - Ganapati D. Yadav
- Department of Chemical Engineering Institute of Chemical Technology Nathalal Parekh Marg Matunga, Mumbai India
| |
Collapse
|
9
|
de Meneses AC, Almeida Sá AG, Lerin LA, Corazza ML, de Araújo PHH, Sayer C, de Oliveira D. Benzyl butyrate esterification mediated by immobilized lipases: Evaluation of batch and fed-batch reactors to overcome lipase-acid deactivation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
|
11
|
Bhavsar KV, Yadav GD. Microwave assisted solvent-free synthesis of n -butyl propionate by immobilized lipase as catalyst. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Biocatalysis of aromatic benzyl-propionate ester by different immobilized lipases. Bioprocess Biosyst Eng 2018; 41:585-591. [PMID: 29350294 DOI: 10.1007/s00449-018-1893-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Benzyl propionate is an aromatic ester that possesses a fruity odor and is usually found in nature in the composition of some fruits such as plums and melons. This work aimed for the benzyl propionate synthesis by esterification using a new immobilized enzyme preparation with low-cost material from Candida antarctica (NS 88011) and three commercial immobilized lipases (Novozym 435, Lipozyme TL-IM and Lipozyme RM-IM). Novozym 435 had the best performance even when the solvent tert-butanol was absent of the reaction medium. Results from a 22 factorial design showed that an increase in the enzyme amount led to a higher conversion, even when the temperature was kept at the low value. Currently, no research had synthesized successfully benzyl propionate via esterification mediated by lipases; and we reached an ester conversion of ~ 44% after 24 h indicating that it is a promising route for benzyl propionate biotechnological production.
Collapse
|
13
|
SÁ AGA, Meneses ACD, Araújo PHHD, Oliveira DD. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Rosa B, Silva G, Conceição G, Carvalho R, Aguiar-Oliveira E, Maldonado R, Kamimura E. Application of partially concentrated Candida rugosa lipase in the enzymatic synthesis of geranyl acetate in organic solvent. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Enhanced synthesis of isoamyl acetate using liquid-gas biphasic system by the transesterification reaction of isoamyl alcohol obtained from fusel oil. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0616-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Synthesis of Geraniol Esters in a Continuous-Flow Packed-Bed Reactor of Immobilized Lipase: Optimization of Process Parameters and Kinetic Modeling. Appl Biochem Biotechnol 2017; 184:630-643. [PMID: 28836237 DOI: 10.1007/s12010-017-2572-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023]
Abstract
With increasing demand for perfumes, flavors, beverages, and pharmaceuticals, the various associated industries are resorting to different approaches to enhance yields of desired compounds. The use of fixed-bed biocatalytic reactors in some of the processes for making fine chemicals will be of great value because the reaction times could be reduced substantially as well as high conversion and yields obtained. In the current study, a continuous-flow packed-bed reactor of immobilized Candida antarctica lipase B (Novozym 435) was employed for synthesis of various geraniol esters. Optimization of process parameters such as biocatalyst screening, effect of solvent, mole ratio, temperature and acyl donors was studied in a continuous-flow packed-bed reactor. Maximum conversion of ~ 87% of geranyl propionate was achieved in 15 min residence time at 70 °C using geraniol and propionic acid with a 1:1 mol ratio. Novozym 435 was found to be the most active and stable biocatalyst among all tested. Ternary complex mechanism with propionic acid inhibition was found to fit the data.
Collapse
|
17
|
|
18
|
Isah AA, Mahat NA, Jamalis J, Attan N, Zakaria II, Huyop F, Wahab RA. Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan–graphene oxide beads. Prep Biochem Biotechnol 2016; 47:199-210. [DOI: 10.1080/10826068.2016.1201681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Abdurrahman Adamu Isah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Naji Arafat Mahat
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Nursyafreena Attan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Iffah Izzati Zakaria
- Natural Product and Drug Discovery, Malaysian Institute of Pharmaceuticals and Nutraceuticals, Gelugor, Pulau Pinang, Malaysia
| | - Fahrul Huyop
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
19
|
da Silva MJ, Ayala DAM. Unravelling transition metal-catalyzed terpenic alcohol esterification: a straightforward process for the synthesis of fragrances. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01538c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron nitrate, a simple and commercially available Lewis acid, catalyzes terpenic alcohol esterification with acetic acid, achieving high conversion and ester selectivity.
Collapse
Affiliation(s)
- M. J. da Silva
- Grupo de Catalise Homogenea e Heterogenea
- Departamento de Química
- CCE
- Universidade Federal de Viçosa
- Viçosa
| | - D. A. M. Ayala
- Grupo de Catalise Homogenea e Heterogenea
- Departamento de Química
- CCE
- Universidade Federal de Viçosa
- Viçosa
| |
Collapse
|