1
|
Growing Biofuel Feedstocks in Copper-Contaminated Soils of a Former Superfund Site. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Copper mining in the Upper Peninsula of Michigan in the mid-19th century generated millions of tons of mining waste, called stamp sand, which was deposited into various offshoots of Lake Superior. The toxic stamp sand converted the area into barren, fallow land. Without a vegetative cover, stamp sand has been eroding into the lakes, adversely affecting aquatic life. Our objective was to perform a greenhouse study, to grow cold-tolerant oilseed crops camelina (Camelina sativa) and field pennycress (Thlaspi arvense) on stamp sand, for the dual purpose of biofuel production and providing a vegetative cover, thereby decreasing erosion. Camelina and field pennycress were grown on stamp sands in columns, using compost to supply nutrients. A greenhouse study in wooden panels was also done to evaluate the effectiveness of camelina in reducing erosion. Results show that camelina significantly reduced erosion and can also be used commercially for generating biodiesel. A 25-fold reduction in Cu content in the surface run-off was observed in the panels with camelina compared to those of the control. Stamp sand-grown camelina seeds contained 20% and 22.7% oil and protein respectively, and their fatty acid composition was similar to previous studies performed on uncontaminated soils.
Collapse
|
2
|
Beniwal V, Nehra KS, Chhokar V. Cadmium induced alteration in lipid profile of developing mustard (Brassica juncea L.) seed. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Genetic Variability in Glucosinolates in Seed ofBrassica juncea: Interest in Mustard Condiment. J CHEM-NY 2015. [DOI: 10.1155/2015/606142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brassica junceais mostly used for oil production which implies selection of genotypes with low glucosinolates level and high oil content. In contrast, condiment production needs varieties with high level in some glucosinolates including sinigrin. The genetic variability was studied mostly by molecular tools. The objectives were almost the decrease of glucosinolates level in order to use the oilcake for animal feed. The aim of this work is to study the genetic variability for different glucosinolates and their relationships with agronomical traits within a large collection ofBrassica junceagenotypes for condiment uses. A collection of 190 genotypes from different origins was studied in Dijon (France). Oil content and total glucosinolates, and sinigrin and gluconapin levels were measured. Flowering and maturation durations, seed yield, and yield components were also measured. Large variability was observed between genotypes for the measured traits within the studied collection. Total glucosinolates varied twofold between extreme genotypes. Values of sinigrin content varied from 0 to more than 134 µmol·g−1. Correlations between glucosinolates traits and both phenological and agronomical characters are presented and discussed for their potential for industrial condiment uses.
Collapse
|